Skip to main content

Biological and Clinical Markers to Differentiate the Type of Anxiety Disorders

  • Chapter
  • First Online:
Anxiety Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1191))

Abstract

The present chapter is an overview of possible biomarkers which distinguish anxiety disorders as classified by the DSM-5. Structural or activity changes in the brain regions; changes in N-acetylaspartate/creatine, dopamine, serotonin, and oxytocin; hearth rate variability; hypothalamic–pituitary–adrenal axis activity; error-related negativity; respiratory regulation; and genetic variants are proposed. However, their clinical utility is questionable due to low specificity and sensitivity: the majority does not distinguish subjects with different anxiety disorders, and they might be influenced by stress, comorbidity, physical activity, and psychotropic medications. In this framework, the staging model, a clinimetric tool which allows to define the degree of progression of a disease at a point in time and where the patient is located on the continuum of the course of the disease, is proposed since several DSM anxiety disorders take place at different stages of the same syndrome according to the staging model. Thus, a stage-specific biomarker model for anxiety disorders is hypothesized and illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  2. Venkatasubramanian G, Keshavan MS. Biomarkers in psychiatry-a critique. Ann Neurosci. 2016;23:3–5.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Kalia M, Silva JC. Biomarkers of psychiatric diseases: current status and future prospects. Metabolism. 2015;64:S11–5.

    Article  CAS  PubMed  Google Scholar 

  4. Scarr E, Millan MJ, Bahn S, Bertolino A, Turck CW, Kapur S, et al. Biomarkers for psychiatry: the journey from fantasy to fact, a report of the 2013 CINP think tank. Int J Neuropsychopharmacol. 2015;18:1–9.

    Article  Google Scholar 

  5. Macaluso M, Preskorn SH. How biomarkers will change psychiatry: from clinical trials to practice. Part I. Introduction. J Psychiatr Pract. 2012;18:118–21.

    Article  PubMed  Google Scholar 

  6. Amur S, LaVange L, Zineh I, Buckman-Garner S, Woodcock J. Biomarker qualification: toward a multiple stakeholder framework for bio- marker development, regulatory acceptance, and utilization. Clin Pharacol Ther. 2015;98:34–46.

    Article  CAS  Google Scholar 

  7. Ankeny JS, Labadie B, Luke J, Hsueh E, Messina J, Zager JS. Review of diagnostic, prognostic, and predictive biomarkers in melanoma. Clin Exp Metastasis. 2018;3(5-6):487–93.

    Article  CAS  Google Scholar 

  8. FDA-NIH Biomarker Working Group. BEST (Biomarkers, Endpoints, and Other Tools) Resource. Silver Spring, MD: Food and Drug Ad- ministration (US); Bethesda, MD: National Institutes of Health (US); 2016.

    Google Scholar 

  9. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  10. Bandelow B, Baldwin D, Abelli M, Altamura C, Dell’Osso B, Dom- schke K, et al. Biological markers for anxiety disorders, OCD and PTSD–a consensus statement. Part I: neuroimaging and genetics. World J Biol Psychiatry. 2016;17:321–65.

    Article  PubMed  Google Scholar 

  11. Bandelow B, Baldwin D, Abelli M, Bolea-Alamanac B, Bourin M, Chamberlain SR, et al. Biological markers for anxiety disorders, OCD and PTSD: a consensus statement. Part II: Neurochemistry, neurophysiology and neurocognition. World J Biol Psychiatry. 2017;18:162–214.

    Article  PubMed  Google Scholar 

  12. De Cristofaro MT, Sessarego A, Pupi A, Biondi F, Faravelli C. Brain perfusion abnormalities in drug-naive, lactate-sensitive panic patients: a SPECT study. Biol Psychiatry. 1993;33:505–12.

    Article  PubMed  Google Scholar 

  13. Gecici O, Acar M, Haktanir A, Emul M, Demirel R, YüCEL A, et al. Evaluation of cerebral blood flow volume using color duplex sonography in patients with untreated panic disorder. Psychiatry Clin Neurosci. 2005;59:676–82.

    Article  PubMed  Google Scholar 

  14. Gottschalk MG, Cooper JD, Chan MK, Bot M, Penninx BWJH, Bahn S. Serum biomarkers predictive of depressive episodes in panic disorder. J Psychiatr Res. 2016;73:53–62.

    Article  CAS  PubMed  Google Scholar 

  15. O’Sullivan K, Newman EF. Neuropsychological impairments in panic disorder: a systematic review. J Affect Disord. 2014;167:268–84.

    Article  PubMed  Google Scholar 

  16. Maron E, Lang A, Tasa G, Liivlaid L, Toru I, Must A, et al. Associations between serotonin-related gene polymorphisms and panic disorder. Int J Neuropsychopharmacol. 2005;8(2):261–6.

    Article  CAS  PubMed  Google Scholar 

  17. Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di Bella D, et al. Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet. 1999;8:621–4.

    Article  CAS  PubMed  Google Scholar 

  18. Grassi M, Caldirola D, Vanni G, Guerriero G, Piccinni M, Valchera A, et al. Baseline respiratory parameters in panic disorder a meta-analysis. J Affect Disord. 2013;146:158–73.

    Article  PubMed  Google Scholar 

  19. Grassi M, Caldirola D, Di Chiaro N, Riva A, Daccò S, Pompili M, et al. Are respiratory abnormalities specific for panic disorder? A meta-analysis. Neuropsychobiology. 2014;70:52–60.

    Article  PubMed  Google Scholar 

  20. Hillebrand S, Gast KB, de Mutsert R, Swenne CA, Jukema JW, Middeldorp S, et al. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and dose–response meta-regression. Europace. 2013;15:742–9.

    Article  PubMed  Google Scholar 

  21. Davies SJ, Ghahramani P, Jackson PR, Noble TW, Hardy PG, Hippisley-Cox J, et al. Association of panic disorder and panic attacks with hypertension. Am J Med. 1999;107:310–6.

    Article  CAS  PubMed  Google Scholar 

  22. Davies SJ, Bjerkeset O, Nutt DJ, Lewis G. A U-shaped relationship between systolic blood pressure and panic symptoms: the HUNT study. Psychol Med. 2012;42:1969–76.

    Article  CAS  PubMed  Google Scholar 

  23. Cosci F, Mansueto G. Biological and clinical markers in Panic Disorder. Psychiatry Investig 2018; https://doi.org/10.30773/pi.2018.07.26

    Article  PubMed  Google Scholar 

  24. Wendt J, Hamm AO, Pané-Farré CA, Thayer JF, Gerlach A, Gloster AT, et al. Pretreatment cardiac vagal tone predicts dropout from and residual symptoms after exposure therapy in patients with panic disorder and agoraphobia. Psychother Psychosom. 2018;87(3):187–9.

    Article  PubMed  Google Scholar 

  25. Bhad R. Red blood cell and platelet indices: a potential biomarker for panic disorder. J Neurosci Rural Pract. 2017;8:164.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Asoglu M, Aslan M, Imre O, Kivrak Y, Akil O, Savik E, et al. Mean platelet volume and red cell distribution width levels in initial evaluation of panic disorder. Neuropsychiatr Dis Treat. 2016;12:2435–8.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Ransing RS, Patil B, Grigo O. Mean platelet volume and platelet distribution width level in patients with panic disorder. J Neurosci Rural Pract. 2017;8:174–8.

    Article  PubMed Central  PubMed  Google Scholar 

  28. McEwen BS. Stress, adaptation, and disease: Allostasis and allostatic load. Ann N Y Acad Sci. 1998;840(1):33–44.

    Article  CAS  PubMed  Google Scholar 

  29. McEwen BS. Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology. 2000;22(2):108–24.

    Article  CAS  PubMed  Google Scholar 

  30. McEwen BS. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci. 2004;1032(1):1–7.

    Article  PubMed  Google Scholar 

  31. Heim C, Shugart M, Craighead WE, Nemeroff CB. Neurobiological and psychiatric consequences of child abuse and neglect. Dev Psychobiol. 2010;52:671–90.

    Article  PubMed  Google Scholar 

  32. Faravelli C, Lo Sauro C, Lelli L, Pietrini F, Lazzeretti L, Godini L, et al. The role of life events and HPA axis in anxiety disorders: a review. Curr Pharm Des. 2012;18:5663–74.

    Article  CAS  PubMed  Google Scholar 

  33. Ising M, Hohne N, Siebertz A, Parchmann AM, Erhardt A, Keck M. Stress response regulation in panic disorder. Curr Pharm Des. 2012;18:5675–84.

    Article  CAS  PubMed  Google Scholar 

  34. Bandelow B, Wedekind D, Pauls J, Broocks A, Hajak G, Ruther E. Salivary cortisol in panic attacks. Am J Psychiatry. 2000;157:454–6.

    Article  CAS  PubMed  Google Scholar 

  35. Du X, Pang TY. Is dysregulation of the HPA-axis a core pathophysiology mediating co-morbid depression in neurodegenerative diseases? Front Psychiatry. 2015;9(6):32.

    Google Scholar 

  36. Jakuszkowiak-Wojten K, Landowski J, Wiglusz MS, Cubała WJ. Cortisol as an indicator of hypothalamic-pituitary-adrenal axis dysregulation in patients with panic disorder: a literature review. Psychiatr Danub. 2015;27(Suppl 1):S445–51.

    PubMed  Google Scholar 

  37. Graeff FG, Zangrossi H Jr. The hypothalamic-pituitary-adrenal axis in anxiety and panic. Psychol Neurosci. 2010;3:3–8.

    Article  Google Scholar 

  38. Schommer NC, Hellhammer DH, Kirschbaum C. Dissociation between reactivity of the hypothalamus-pituitary-adrenal axis and the sympathetic-adrenal-medullary system to repeated psychosocial stress. Psychosom Med. 2003;65:450–60.

    Article  CAS  PubMed  Google Scholar 

  39. Vreeburg SA, Zitman FG, van Pelt J, Derijk RH, Verhagen JC, van Dyck R, et al. Salivary cortisol levels in persons with and without different anxiety disorders. Psychosom Med. 2010;72(4):340–7.

    Article  CAS  PubMed  Google Scholar 

  40. Coryell W, Noyes R Jr, Reich J. The prognostic significance of HPA-axis disturbance in panic disorder: a three-year follow-up. Biol Psychiatry. 1991;29:96–102.

    Article  CAS  PubMed  Google Scholar 

  41. Abelson JL, Curtis GC. Hypothalamic-pituitary-adrenal axis activity in panic disorder: prediction of long-term outcome by pretreatment cortisol levels. Am J Psychiatry. 1996;153:69–73.

    Article  CAS  PubMed  Google Scholar 

  42. Machado S, Sancassiani F, Paes F, Rocha N, Murillo-Rodriguez E, Nardi AE. Panic disorder and cardiovascular diseases: an overview. Int Rev Psychiatry. 2017;29:436–44.

    Article  PubMed  Google Scholar 

  43. Del Casale A, Serata D, Rapinesi CD, Kotzalidis G, Angeletti G, Tatarelli R, et al. Structural neuroimaging in patients with panic disorder: findings and limitations of recent studies. Psychiatr Danub. 2013;25(2):0–114.

    CAS  Google Scholar 

  44. Wittchen HU, Gloster AT, Beesdo-Baum K, Fava GA, Craske MG. Agoraphobia: a review of the diagnostic classificatory position and criteria. Depress Anxiety. 2010;27(2):113–33.

    Article  PubMed  Google Scholar 

  45. Garvey MJ, Noyes JR. NAG level differences in panic disorder and agoraphobia. J Anxiety Disord. 2005;19(7):818–25.

    Article  PubMed  Google Scholar 

  46. Westberg P, Modigh K, Lisjö P, Eriksson E. Higher postdexamethasone serum cortisol levels in agoraphobic than in nonagoraphobic panic disorder patients. Biol Psychiatry. 1991;30(3):247–56.

    Article  CAS  PubMed  Google Scholar 

  47. Kartalci S, Dogan M, Unal S, Ozcan AC, Ozdemir S, Atmaca M. Pituitary volume in patients with panic disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(1):203–7.

    Article  PubMed  Google Scholar 

  48. Maron E, Nutt D. Biological markers of generalized anxiety disorder. Dialogues Clin Neurosci. 2017;19(2):147–58.

    PubMed Central  PubMed  Google Scholar 

  49. Abdallah CG, Coplan JD, Jackowski A, Sato JR, Mao X, Shungu DC, et al. A pilot study of hippocampal volume and N-acetylaspartate (NAA) as response biomarkers in riluzole-treated patients with GAD. Eur Neuropsychopharmacol. 2013;23(4):276–84.

    Article  CAS  PubMed  Google Scholar 

  50. Hilbert K, Pine DS, Muehlhan M, Lueken U, Steudete-Schmiedgen S, Beesdo-Baum K. Gray and white matter volume abnormalities in generalized anxiety disorder by categorical and dimensional characterization. Psychiatry Res. 2015;234(3):314–20.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Mochcovitch MD, da Rocha Freire RC, Garcia RF, Nardi AE. A systematic review of fMRI studies in generalized anxiety disorder: evaluating its neural and cognitive basis. J Affect Disord. 2014;167:336–42.

    Article  PubMed  Google Scholar 

  52. Qiao J, Li A, Cao C, Wang Z, Sun J, Xu G. Aberrant functional network connectivity as a biomarker of generalized anxiety disorder. Front Hum Neurosci. 2017;11:626.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Nitschke JB, Sarinopoulos I, Oathes DJ, Johnston T, Whalen PJ, Davidson RJ, et al. Anticipatory activation in the amygdala and anterior cingulate in generalized anxiety disorder and prediction of treatment response. Am J Psychiatry. 2009;166(3):302–10.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Whalen PJ, Johnstone T, Somerville LH, Nitschke JB, Polis S, Alexander AL, et al. A functional magnetic resonance imaging predictor of treatment response to venlafaxine in generalized anxiety disorder. Biol Psychiatry. 2008;63:858–63.

    Article  CAS  PubMed  Google Scholar 

  55. Meyer A. Developing psychiatric biomarkers: a review focusing on the error-related negativity as a biomarker for anxiety. Curr Treat Options Psychiatry. 2016;3(4):356–64.

    Article  Google Scholar 

  56. Yang Y, Zhang X, Zhu Y, Dai Y, Liu T, Wang Y. Cognitive impairment in generalized anxiety disorder revealed by event-related potential N270. Neuropsychiatr Dis Treat. 2015;11:1405–11.

    PubMed Central  PubMed  Google Scholar 

  57. Butters MA, Bhalla RK, Andreescu C, Wetherell JL, Mantella R, Begley AE, et al. Changes in neuropsychological functioning following treatment for late-life generalised anxiety disorder. Br J Psychiatry. 2011;199(3):211–8.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Thames AD, Panos SE, Arentoft A, Byrd DA, Hinkin CH, Arbid N. Mild test anxiety influences neurocognitive performance among African Americans and European Americans: identifying interfering and facilitating sources. Cultur Divers Ethnic Minor Psychol. 2015;21(1):105–13.

    Article  PubMed  Google Scholar 

  59. Molina E, Cervilla J, Rivera M, Torres F, Bellon JA, Moreno B, et al. Polymorphic variation at the serotonin 1-A receptor gene is associated with comorbid depression and generalized anxiety. Psychiatr Genet. 2011;21:195–201.

    Article  PubMed  Google Scholar 

  60. Chalmers JA, Quintana DS, Abbott MJ, Kemp AH. Anxiety disorders are associated with reduced heart rate variability: a meta-analysis. Front Psychiatry. 2014;5:80.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Levine JC, Fleming R, Piedmont JI, Cain SM, Chen WJ. Heart rate variability and generalized anxiety disorder during laboratory-induced worry and aversive imagery. J Affect Disord. 2016;205:207–15.

    Article  PubMed  Google Scholar 

  62. Lyonfields JD, Borkovec TD, Thayer JF. Vagal tone in generalized anxiety disorder and the effects of aversive imagery and worrisome thinking. Behav Ther. 1995;26(3):457–66.

    Article  Google Scholar 

  63. Thayer JF, Friedman BH, Borkovec TD. Autonomic characteristics of generalized anxiety disorder and worry. Biol Psychiatry. 1996;39(4):255–66.

    Article  CAS  PubMed  Google Scholar 

  64. Pittig A, Arch JJ, Lam CWR, Craske MG. Heart rate and heart rate variability in panic, social anxiety, obsessive–compulsive, and generalized anxiety disorders at baseline and in response to relaxation and hyperventilation. Int J Psychophysiol. 2013;87(1):19–27.

    Article  PubMed  Google Scholar 

  65. Mantella RC, Butters MA, Amico JA, Mazumdar S, Rollman BL. Begley et al. Salivary cortisol is associated with diagnosis and severity of late-life generalized anxiety disorder. Psychoneuroendocrinology. 2008;33(6):773–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Tafet GE, Feder DJ, Abulafia DP, Roffman SS. Regulation of hypothalamic–pituitary–adrenal activity in response to cognitive therapy in patients with generalized anxiety disorder. Cogn Affect Behav Neurosci. 2005;5:37–40.

    Article  PubMed  Google Scholar 

  67. Schienle A, Ebner F, Schäfer A. Localized gray matter volume abnormalities in generalized anxiety disorder. Eur Arch Psychiatry Clin Neurosci. 2011;261(4):303–7.

    Article  PubMed  Google Scholar 

  68. Linares IM, Trzesniak C, Chagas MH, Hallak JE, Nardi AE, Crippa JA. Neuroimaging in specific phobia disorder: a systematic review of the literature. Rev Bras Psiquiatr. 2012;34:101–11.

    Article  PubMed  Google Scholar 

  69. Peñate W, Fumero A, Vina C, Herrero M, Marrero RJ, Rivero F. A meta-analytic review of neuroimaging studies of specific phobia to small animals. Eur Psychiatry. 2017;31(1):23–36.

    Article  Google Scholar 

  70. Xie B, Wang B, Suo P, Kou C, Wang J, Meng X, et al. Genetic association between BDNF gene polymorphisms and phobic disorders: a case-control study among mainland Han Chinese. J Affect Disord. 2011;132:239–42.

    Article  CAS  PubMed  Google Scholar 

  71. Alpers GW, Abelson JL, Wilhelm FH, Roth WT. Salivary cortisol response during exposure treatment in driving phobics. Psychosom Med. 2003;65:679–87.

    Article  PubMed  Google Scholar 

  72. Lilliecreutz C, Theodorsson E, Sydsjo G, Josefsson A. Salivary cortisol in pregnant women suffering from blood and injection phobia. Arch Womens Ment Health. 2011;14:405–11.

    Article  PubMed  Google Scholar 

  73. Van Duinen MA, Schruers KRJ, Griez EJL. Desynchrony of fear in phobic exposure. J Psychopharmacol. 2010;24(5):695–9.

    Article  PubMed  Google Scholar 

  74. de Quervain DJ, Bentz D, Michael T, Bolt OC, Wiederhold BK, Margraf J, et al. Glucocorticoids enhance extinction-based psychotherapy. Proc Natl Acad Sci USA. 2011;108(16):6621–5.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Soravia LM, Heinrichs M, Aerni A, Maroni C, Schelling G, Ehlert U, et al. Glucocorticoids reduce phobic fear in humans. Proc Natl Acad Sci USA. 2006;103(14):5585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Irle E, Ruhleder M, Lange C, Seidler-Brandler U, Salzer S, Dechent P, et al. Reduced amygdalar and hippocampal size in adults with generalized social phobia. J Psychiatry Neurosci. 2010;35:126–31.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Hoge EA, Pollack MH, Kaufman RE, Zak PJ, Simon NM. Oxytocin levels in social anxiety disorder. CNS Neurosci Ther. 2008;14(3):165–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Van der Linden G, van Heerden B, Warwick J, Wessels C, van Kradenburg J, Zungu-Dirwayi N, et al. Functional brain imaging and pharmacotherapy in social phobia: single photon emission computed tomography before and after treatment with the selective serotonin reuptake inhibitor citalopram. Prog Neuropsychopharmacol Biol Psychiatry. 2000;24:419–38.

    Article  PubMed  Google Scholar 

  79. García-Rubio MJ, Espín L, Hidalgo V, Salvador A, Gómez-Amor J. Autonomic markers associated with generalized social phobia symptoms: heart rate variability and salivary alpha-amylase. Stress. 2017;20(1):61–8.

    Article  CAS  Google Scholar 

  80. Alvares GA, Quintana DS, Kemp AH, Van Zwieten A, Balleine BW, Hickie IB, et al. Reduced heart rate variability in social anxiety disorder: associations with gender and symptom severity. PloS one. 2013;8(7):e70468.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Friedman BH. An autonomic flexibility–neurovisceral integration model of anxiety and cardiac vagal tone. Biol Psychol. 2007;74(2):185–99.

    Article  PubMed  Google Scholar 

  82. O’Toole MS, Pedersen AD. A systematic review of neuropsychological performance in social anxiety disorder. Nord J Psychiatry. 2011;65:147–61.

    Article  PubMed  Google Scholar 

  83. O’Toole MS, Pedersen AD, Hougaard E, Rosenberg NK. Neuropsychological test performance in social anxiety disorder. Nord J Psychiatry. 2015;69:444–52.

    Article  PubMed  Google Scholar 

  84. Lanzenberger R, Wadsak W, Spindelegger C, Mitterhauser M, Akimova E, Mien LK, et al. Cortisol plasma levels in social anxiety disorder patients correlate with serotonin-1A receptor binding in limbic brain regions. Int J Neuropsychopharmacol. 2010;13(9):1129–43.

    Article  CAS  PubMed  Google Scholar 

  85. Klumbies E, Braeuer D, Hoyer J, Kirschbaum C. The reaction to social stress in social phobia: discordance between physiological and subjective parameters. Plos one. 2014;9(8):e105670.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Strahler J, Mueller A, Rosenloecher F, Kirschbaum C, Rohleder N. Salivary alpha-amylase stress reactivity across different age groups. Psychophysiology. 2010;47:587–95.

    Article  PubMed  Google Scholar 

  87. Yoon KL, Joormann J. Stress reactivity in social anxiety disorder with and without comorbid depression. J Abnorm Psychol. 2012;121(1):250–5.

    Article  PubMed  Google Scholar 

  88. Ströhle A, Gensichen J, Domschke K. The diagnosis and treatment of anxiety disorders. Dtsch Arztebl Int. 2018;155(37):611–20.

    PubMed  Google Scholar 

  89. Cloninger CR. Implications of comorbidity for the classification of mental disorders: the need for a psychobiology of coherence. In: Maj M, Gaebel W, Lopez-Ibor JJ, Sartorius N, editors. Psychiatric diagnosis and classification. Chichester: Wiley; 2002. p. 79–105.

    Chapter  Google Scholar 

  90. Boksa P. A way forward for research on biomarkers for psychiatric dis- orders. J Psychiatry Neurosci JPN. 2013;38:75–7.

    Article  PubMed  Google Scholar 

  91. Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17(12):1174–9.

    Article  CAS  PubMed  Google Scholar 

  92. Fava GA, Guidi J, Grandi S, Hasler G. The missing link between clinical states and biomarkers in mental disorders. Psychother Psychosom. 2014;83:136–41.

    Article  PubMed  Google Scholar 

  93. Danese A, McEwen BS. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol Behav. 2012;106:29–39.

    Article  CAS  PubMed  Google Scholar 

  94. Mansueto G, Schruers K, Cosci F, van Os J, GROUP Investigators. Childhood adversities and psychotic symptoms: the potential mediating or moderating role of neurocognition and social cognition. Schizophr Res. 2018; https://doi.org/10.1016/j.schres.2018.11.028.

    Article  PubMed  Google Scholar 

  95. May R, McBerty V, Zaky A, Gianotti M. Vigorous physical activity predicts higher heart rate variability among younger adults. J Physiol Anthropol. 2017;36(1):24.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Sandercock GR, Bromley PD, Brodie DA. Effects of exercise on heart rate variability: inferences from meta-analysis. Med Sci Sports Exerc. 2005;37(3):433–9.

    Article  PubMed  Google Scholar 

  97. Fava GA, Cosci F, Offidani E, Guidi J. Behavioral toxicity revisited: iatrogenic comorbidity in psychiatric evaluation and treatment. J Clin Psychopharmacol. 2016;36:550–3.

    Article  PubMed  Google Scholar 

  98. Tomba E, Guidi J, Fava GA. What psychologists need to know about psychotropic medications. Clin Psychol Psychother. 2018;25:181–7.

    Article  PubMed  Google Scholar 

  99. Feinstein AR. T. Duckett Jones Memorial Lecture. The Jones criteria and the challenge of clinimetrics. Circulation. 1982;66:1–5.

    Article  CAS  PubMed  Google Scholar 

  100. Fava GA, Rafanelli C, Tomba E. The clinical process in psychiatry: a clinimetric approach. J Clin Psychiatry. 2012;73:177–84.

    Article  PubMed  Google Scholar 

  101. World Health Organization. International statistical classification of diseases and related health problems 2018. (11th Revision). https://icd.who.int/browse11/l-m/en

  102. First MB, Rebello TJ, Keeley JW, Bhargava R, Dai Y, Kulygina M, et al. Do mental health professionals use diagnostic classifications the way we think they do? A global survey. World Psychiatry. 2018;17:187–95.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Cosci F, Fava GA. Staging of mental disorders: systematic review. Psychother Psychosom. 2013;82:20–34.

    Article  PubMed  Google Scholar 

  104. Fava GA, Tomba E. New modalities of assessment and treatment planning in depression: the sequential approach. CNS Drugs. 2010;24:453–65.

    Article  PubMed  Google Scholar 

  105. Faravelli C. Assessment of psychopathology. Psychother Psychosom. 2004;73:139–41.

    Article  PubMed  Google Scholar 

  106. Fava GA, Ruini C, Rafanelli C. Psychometric theory is an obstacle to the progress of clinical research. Psychother Psychosom. 2004;73:145–8.

    Article  PubMed  Google Scholar 

  107. Tomba E, Bech P. Clinimetrics and clinical psychometrics: macro-and micro-analysis. Psychother Psychosom. 2012;81:333–43.

    Article  PubMed  Google Scholar 

  108. Fava GA, Tomba E, Sonino N. Clinimetrics: the science of clinical measurements. Int J Clin Pract. 2012;66(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  109. Feinstein AR. An analysis of diagnostic reasoning: I. The domains and disorders of clinical macrobiology. Yale J Biol Med. 1973;46:212–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Feinstein AR. Clinimetrics. New Haven: Yale University Press; 1987.

    Book  Google Scholar 

  111. Fava GA, Kellner R. Staging: a neglected dimension in psychiatric classification. Acta Psychiatr Scand. 1993;87:225–30.

    Article  CAS  PubMed  Google Scholar 

  112. Detre TP, Jarecki HG. Modern Psychiatric Treatment. Philadelphia: Lippincott; 1971.

    Google Scholar 

  113. Goldstein-Piekarski AN, Williams LM, Humphreys K. A trans-diagnostic review of anxiety disorder comorbidity and the impact of multiple exclusion criteria on studying clinical outcomes in anxiety disorders. Transl Psychiatry. 2016;6(6):e847.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Fava GA, Rafanelli C, Ottolini F, Ruini C, Cazzaro M, Grandi S. Psychological well-being and residual symptoms in remitted patients with panic disorder and agoraphobia. J Affect Disord. 2001;65:185–90.

    Article  CAS  PubMed  Google Scholar 

  115. Cosci F. The psychological development of panic disorder: implications for neurobiology and treatment. Braz J Psychiatry. 2012;34:9–19.

    Article  Google Scholar 

  116. Guidi J, Tomba E, Cosci F, Park SK, Fava GA. The role of staging in planning psychotherapeutic interventions in depression. J Clin Psychiatry. 2017;78(4):456–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiammetta Cosci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cosci, F., Mansueto, G. (2020). Biological and Clinical Markers to Differentiate the Type of Anxiety Disorders. In: Kim, YK. (eds) Anxiety Disorders. Advances in Experimental Medicine and Biology, vol 1191. Springer, Singapore. https://doi.org/10.1007/978-981-32-9705-0_13

Download citation

Publish with us

Policies and ethics