Skip to main content

Transthyretin Amyloid Neuropathy: The Schwann Cell Hypothesis

  • Chapter
  • First Online:
Book cover Myelin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1190))

Abstract

Transthyretin (TTR)-familial amyloid polyneuropathy (FAP) is a systemic amyloidosis caused by mutations in the TTR gene. Typically, patients initially present with sensory and autonomic symptoms, which can lead to sensory dominant polyneuropathy and autonomic neuropathy. Mutations in TTR cause the tetrameric protein to dissociate and form amyloid deposits in the peripheral nervous system, most prominently in dorsal root ganglia (DRG), autonomic ganglia, and nerve trunks. Teased fiber studies have shown that segmental demyelination and axonal degeneration preferentially occur in the proximal and distal regions of the peripheral nerves, respectively. Nevertheless, it remains unknown why genetic variants of TTR lead to neurodegeneration in the peripheral nervous system. Recent studies in our laboratory have uncovered an important role for Schwann cells in the disease progression of FAP. In this review, we summarize findings implicating Schwann cells in FAP, and provide evidence that DRG may serve as the initial site of lesion formation in the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson K, Olofsson A, Nielsen EH, Svehag SE, Lundgren E (2002) Only amyloidogenic intermediates of transthyretin induce apoptosis. Biochem Biophys Res Commun 294:309–314

    Article  CAS  Google Scholar 

  • Andrade C (1952) A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 75:408–427

    Article  CAS  Google Scholar 

  • Carvalho J, Coimbra A, Andrade C (1976) Peripheral nerve fibre changes in asymptomatic children of patients with familial amyloid polyneuropathy. Brain 99:1–10

    Article  CAS  Google Scholar 

  • Coimbra A, Andrade C (1971a) Familial amyloid polyneuropathy: an electron microscope study of the peripheral nerve in five cases. I. Interstitial changes. Brain 94:199–206

    Article  CAS  Google Scholar 

  • Coimbra A, Andrade C (1971b) Familial amyloid polyneuropathy: an electron microscope study of the peripheral nerve in five cases. II. Nerve fibre changes. Brain 94:207–212

    Article  CAS  Google Scholar 

  • Colon W, Kelly JW (1992) Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31:8654–8660

    Article  CAS  Google Scholar 

  • Connors LH, Lim A, Prokaeva T, Roskens VA, Costello CE (2003) Tabulation of human transthyretin (TTR) variants, 2003. Amyloid 10:160–184

    Article  CAS  Google Scholar 

  • Costa PP, Figueira AS, Bravo FR (1978) Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc Natl Acad Sci U S A 75:4499–4503

    Article  CAS  Google Scholar 

  • Dyck PJ, Lambert EH (1969) Dissociated sensation in amyloidosis. Compound action potential, quantitative histologic and teased-fiber, and electron microscopic studies of sural nerve biopsies. Arch Neurol 20:490–507

    Article  CAS  Google Scholar 

  • Fleming CE, Mar FM, Franquinho F, Saraiva MJ, Sousa MM (2009) Transthyretin internalization by sensory neurons is megalin mediated and necessary for its neuritogenic activity. J Neurosci 29:3220–3232

    Article  CAS  Google Scholar 

  • Goncalves NP, Costelha S, Saraiva MJ (2014a) Glia cells in familial amyloidotic polyneuropathy. Acta Neuropathol Commun 2:177. https://doi.org/10.1186/s40478-014-0177-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Goncalves NP, Teixeira-Coelho M, Saraiva MJ (2014b) The inflammatory response to sciatic nerve injury in a familial amyloidotic polyneuropathy mouse model. Exp Neurol 257:76–87

    Article  CAS  Google Scholar 

  • Hanyu N, Ikeda S, Nakadai A, Yanagisawa N, Powell HC (1989) Peripheral nerve pathological findings in familial amyloid polyneuropathy: a correlative study of proximal sciatic nerve and sural nerve lesions. Ann Neurol 25:340–350

    Article  CAS  Google Scholar 

  • Holmgren G, Steen L, Ekstedt J, Groth CG, Ericzon BG, Eriksson S, Andersen O, Karlberg I, Norden G, Nakazato M et al (1991) Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clin Genet 40:242–246

    Article  CAS  Google Scholar 

  • Inoue S, Kuroiwa M, Saraiva MJ, Guimarães A, Kisilevsky R (1998) Ultrastructure of familial amyloid polyneuropathy amyloid fibrils: examination with high-resolution electron microscopy. J Struct Biol 124(1):1–12

    Article  CAS  Google Scholar 

  • Kohno K, Palha JA, Miyakawa K, Saraiva MJ, Ito S, Mabuchi T, Blaner WS, Iijima H, Tsukahara S, Episkopou V, Gottesman ME, Shimada K, Takahashi K, Yamamura K, Maeda S (1997) Analysis of amyloid deposition in a transgenic mouse model of homozygous familial amyloidotic polyneuropathy. Am J Pathol 150:1497–1508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koike H, Ikeda S, Takahashi M, Kawagashira Y, Iijima M, Misumi Y, Ando Y, Ikeda SI, Katsuno M, Sobue G (2016) Schwann cell and endothelial cell damage in transthyretin familial amyloid polyneuropathy. Neurology 87:2220–2229

    Article  CAS  Google Scholar 

  • Kollmer J, Hund E, Hornung B, Hegenbart U, Schonland SO, Kimmich C, Kristen AV, Purrucker J, Rocken C, Heiland S, Bendszus M, Pham M (2015) In vivo detection of nerve injury in familial amyloid polyneuropathy by magnetic resonance neurography. Brain 138:549–562

    Article  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    Article  CAS  Google Scholar 

  • Luís ML (1978) Electroneurophysiological studies in familial amyloid polyneuropathy – Portuguese type. J Neurol Neurosurg Psychiatry 41:847–850

    Article  Google Scholar 

  • Mita S, Maeda S, Shimada K, Araki S (1984) Cloning and sequence analysis of cDNA for human prealbumin. Biochem Biophys Res Commun 124:558–564

    Article  CAS  Google Scholar 

  • Murakami T, Sunada Y (2014) Expression of the transthyretin gene in Schwann cells and familial amyloidotic polyneuropathy-mediated neurodegeneration. In: Sango K, Yamauchi J (eds) Schwann cell development and pathology. Springer, Tokyo, pp 103–115

    Chapter  Google Scholar 

  • Murakami T, Uchino M, Ando M (1995) Genetic abnormalities and pathogenesis of familial amyloidotic polyneuropathy. Pathol Int 45:1–9

    Article  CAS  Google Scholar 

  • Murakami T, Ohsawa Y, Sunada Y (2008) The transthyretin gene is expressed in human and rodent dorsal root ganglia. Neurosci Lett 436:335–339

    Article  CAS  Google Scholar 

  • Murakami T, Ohsawa Y, Li Z, Yamamura K, Sunada Y (2010) The transthyretin gene is expressed in Schwann cells of peripheral nerves. Brain Res 1348:222–225

    Article  CAS  Google Scholar 

  • Murakami T, Sango K, Watabe K, Niimi N, Takaku S, Li Z, Yamamura K, Sunada Y (2015) Schwann cells contribute to neurodegeneration in transthyretin amyloidosis. J Neurochem 134:66–74

    Article  CAS  Google Scholar 

  • Murakami T, Nishimura H, Nagai T, Hemm S, Kutoku Y, Ohsawa Y, Sunada Y (2017) Clinical and pathological findings in familial amyloid polyneuropathy caused by a transthyretin E61K mutation. J Neurol Sci 381:55–58

    Article  CAS  Google Scholar 

  • Planté-Bordeneuve V, Said G (2011) Familial amyloid polyneuropathy. Lancet Neurol 10:1086–1097

    Article  Google Scholar 

  • Pokrzywa M, Dacklin I, Vestling M, Hultmark D, Lundgren E, Cantera R (2010) Uptake of aggregating transthyretin by fat body in a Drosophila model for TTR-associated amyloidosis. PLoS One 5(12):e14343

    Article  CAS  Google Scholar 

  • Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN (2004) Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci U S A 101:2817–2822

    Article  CAS  Google Scholar 

  • Said G, Ropert A, Faux N (1984) Length-dependent degeneration of fibers in Portuguese amyloid polyneuropathy: a clinicopathologic study. Neurology 34:1025–1032

    Article  CAS  Google Scholar 

  • Sekijima Y, Wiseman RL, Matteson J, Hammarstrom P, Miller SR, Sawkar AR, Balch WE, Kelly JW (2005) The biological and chemical basis for tissue-selective amyloid disease. Cell 121:73–85

    Article  CAS  Google Scholar 

  • Sobue G, Nakao N, Murakami K, Yasuda T, Sahashi K, Mitsuma T, Sasaki H, Sakaki Y, Takahashi A (1990) Type I familial amyloid polyneuropathy. A pathological study of the peripheral nervous system. Brain 113:903–919

    Article  Google Scholar 

  • Sousa MM, Saraiva MJ (2003) Neurodegeneration in familial amyloid polyneuropathy: from pathology to molecular signaling. Prog Neurobiol 71:385–400

    Article  CAS  Google Scholar 

  • Sousa MM, Cardoso I, Fernandes R, Guimarães A, Saraiva MJ (2001) Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am J Pathol 159:1993–2000

    Article  CAS  Google Scholar 

  • Toyooka K, Fujimura H, Ueno S, Yoshikawa H, Kaido M, Nishimura T, Yorifuji S, Yanagihara T (1995) Familial amyloid polyneuropathy associated with transthyretin Gly42 mutation: a quantitative light and electron microscopic study of the peripheral nervous system. Acta Neuropathol 90:516–525

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Research Project Grants from Kawasaki Medical School [29-046]; and KAKENHI [16 K09686]. We thank Travis J. Bernardo, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsufumi Murakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murakami, T., Sunada, Y. (2019). Transthyretin Amyloid Neuropathy: The Schwann Cell Hypothesis. In: Sango, K., Yamauchi, J., Ogata, T., Susuki, K. (eds) Myelin. Advances in Experimental Medicine and Biology, vol 1190. Springer, Singapore. https://doi.org/10.1007/978-981-32-9636-7_24

Download citation

Publish with us

Policies and ethics