Skip to main content

Proteomic Interrogation in Cancer Biomarker

  • Chapter
  • First Online:
Translational Research in Breast Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1187))

Abstract

Biomarkers factor into the diagnosis and treatment of almost every patient with cancer. The innovation in proteomics follows improvement of mass spectrometry techniques and data processing strategy. Recently, proteomics and typical biological studies have been the answer for clinical applications. The clinical proteomics techniques are now actively adapted to protein identification in large patient cohort, biomarker development for more sensitive and specific screening based on quantitative data. And, it is important for clinical, translational researchers to be acutely aware of the issues surrounding appropriate biomarker development, in order to facilitate entry of clinically useful biomarkers into the clinic. Here, we discuss in detail include the case research for clinical proteomics. Furthermore, we give an overview on the current developments and novel findings in proteomics-based cancer biomarker research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol. 2006;24(8):971–83.

    Article  CAS  PubMed  Google Scholar 

  2. Gromov P, Moreira JM, Gromova I, Celis JE. Proteomic strategies in bladder cancer: from tissue to fluid and back. Proteomics Clin Appl. 2008;2(7–8):974–88.

    Article  CAS  PubMed  Google Scholar 

  3. Reymond MA, Schlegel W. Proteomics in cancer. Adv Clin Chem. 2007;44:103–42.

    Article  CAS  PubMed  Google Scholar 

  4. Cowan ML, Vera J. Proteomics: advances in biomarker discovery. Expert Rev Proteomics. 2008;5(1):21–3.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1(11):845–67.

    Article  CAS  PubMed  Google Scholar 

  6. Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics. 2006;6(23):6326–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sallam RM. Proteomics in cancer biomarkers discovery: challenges and applications. Dis Markers. 2015;2015:321370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chang JW, Kang UB, Kim DH, Yi JK, Lee JW, Noh DY, et al. Identification of circulating endorepellin LG3 fragment: potential use as a serological biomarker for breast cancer. Proteomics Clin Appl. 2008;2(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  9. Francis FL, Jankova L, Dent OF, Molloy MP, Kwun SY, Clarke C, et al. Identification of distinctive protein expression patterns in colorectal adenoma. Proteomics Clin Appl. 2010;4(1):60–70.

    Article  CAS  Google Scholar 

  10. Hamelin C, Cornut E, Poirier F, Pons S, Beaulieu C, Charrier JP, et al. Identification and verification of heat shock protein 60 as a potential serum marker for colorectal cancer. FEBS J. 2011;278(24):4845–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Magdeldin S, Enany S, Yoshida Y, Xu B, Zhang Y, Zureena Z, et al. Basics and recent advances of two-dimensional- polyacrylamide gel electrophoresis. Clin Proteomics. 2014;11(1):16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kim HJ, Kang UB, Lee H, Jung JH, Lee ST, Yu MH, et al. Profiling of differentially expressed proteins in stage IV colorectal cancers with good and poor outcomes. J Proteome. 2012;75(10):2983–97.

    Article  CAS  Google Scholar 

  13. Zhou W, Liotta LA, Petricoin EF. The spectra count label-free quantitation in cancer proteomics. Cancer Genomics Proteomics. 2012;9(3):135–42.

    CAS  PubMed  Google Scholar 

  14. Zhu W, Smith JW, Huang CM. Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol. 2010;2010:840518.

    PubMed  Google Scholar 

  15. Beretov J, Wasinger VC, Millar EK, Schwartz P, Graham PH, Li Y. Proteomic analysis of urine to identify breast cancer biomarker candidates using a label-free LC-MS/MS approach. PLoS One. 2015;10(11):e0141876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen L, Zhao W, He J, Li L, Meng D, Cai D, et al. Label-free quantitative proteomic screening of candidate plasma biomarkers for the prognosis of breast cancer with different lymph node statuses. Proteomics Clin Appl. 2018;12(3):e1700117.

    Article  PubMed  CAS  Google Scholar 

  17. Rudnick PA, Wang X, Yan X, Sedransk N, Stein SE. Improved normalization of systematic biases affecting ion current measurements in label-free proteomics data. Mol Cell Proteomics. 2014;13(5):1341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakamura T, Oda Y. Mass spectrometry-based quantitative proteomics. Biotechnol Genet Eng Rev. 2007;24:147–63.

    Article  CAS  PubMed  Google Scholar 

  19. Ciccimaro E, Blair IA. Stable isotope dilution LC-MS for quantitative biomarker analysis. Bioanalysis. 2010;2(2):311–41.

    Article  CAS  PubMed  Google Scholar 

  20. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–86.

    Article  CAS  PubMed  Google Scholar 

  21. Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol. 2003;21(3):315–8.

    Article  CAS  PubMed  Google Scholar 

  22. Stastna M, van Eyk JE. Investigating the secretome: lessons about the cells that comprise the heart. Circ Cardiovasc Genet. 2012;5(1):o8–o18.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M. Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods. 2010;7(5):383–5.

    Article  CAS  PubMed  Google Scholar 

  24. Boersema PJ, Geiger T, Wisniewski JR, Mann M. Quantification of the N-glycosylated secretome by super-SILAC during breast cancer progression and in human blood samples. Mol Cell Proteomics. 2013;12(1):158–71.

    Article  PubMed  CAS  Google Scholar 

  25. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17(10):994–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kang UB, Alexander WM, Marto JA. Interrogating the hidden phosphoproteome. Proteomics. 2017;17(6)

    Google Scholar 

  27. Schneider LV, Hall MP. Stable isotope methods for high-precision proteomics. Drug Discov Today. 2005;10(5):353–63.

    Article  CAS  PubMed  Google Scholar 

  28. Liu T, Qian WJ, Mottaz HM, Gritsenko MA, Norbeck AD, Moore RJ, et al. Evaluation of multiprotein immunoaffinity subtraction for plasma proteomics and candidate biomarker discovery using mass spectrometry. Mol Cell Proteomics. 2006;5(11):2167–74.

    Article  CAS  PubMed  Google Scholar 

  29. Yocum AK, Yu K, Oe T, Blair IA. Effect of immunoaffinity depletion of human serum during proteomic investigations. J Proteome Res. 2005;4(5):1722–31.

    Article  CAS  PubMed  Google Scholar 

  30. Brand J, Haslberger T, Zolg W, Pestlin G, Palme S. Depletion efficiency and recovery of trace markers from a multiparameter immunodepletion column. Proteomics. 2006;6(11):3236–42.

    Article  CAS  PubMed  Google Scholar 

  31. Kang UB, Ahn Y, Lee JW, Kim YH, Kim J, Yu MH, et al. Differential profiling of breast cancer plasma proteome by isotope-coded affinity tagging method reveals biotinidase as a breast cancer biomarker. BMC Cancer. 2010;10:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. DeSouza LV, Taylor AM, Li W, Minkoff MS, Romaschin AD, Colgan TJ, et al. Multiple reaction monitoring of mTRAQ-labeled peptides enables absolute quantification of endogenous levels of a potential cancer marker in cancerous and normal endometrial tissues. J Proteome Res. 2008;7(8):3525–34.

    Article  CAS  PubMed  Google Scholar 

  33. Kang UB, Yeom J, Kim H, Lee C. Quantitative analysis of mTRAQ-labeled proteome using full MS scans. J Proteome Res. 2010;9(7):3750–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kang UB, Yeom J, Kim HJ, Kim H, Lee C. Expression profiling of more than 3500 proteins of MSS-type colorectal cancer by stable isotope labeling and mass spectrometry. J Proteome. 2012;75(10):3050–62.

    Article  CAS  Google Scholar 

  35. Yoon JY, Lim KY, Lee S, Park K, Paek E, Kang UB, et al. Improved quantitative analysis of mass spectrometry using quadratic equations. J Proteome Res. 2010;9(5):2775–85.

    Article  CAS  PubMed  Google Scholar 

  36. Suh EJ, Kabir MH, Kang UB, Lee JW, Yu J, Noh DY, et al. Comparative profiling of plasma proteome from breast cancer patients reveals thrombospondin-1 and BRWD3 as serological biomarkers. Exp Mol Med. 2012;44(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  37. Choe L, D'Ascenzo M, Relkin NR, Pappin D, Ross P, Williamson B, et al. 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease. Proteomics. 2007;7(20):3651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mertins P, Tang LC, Krug K, Clark DJ, Gritsenko MA, Chen L, et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat Protoc. 2018;13(7):1632–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gingras AC, Gstaiger M, Raught B, Aebersold R. Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol. 2007;8(8):645–54.

    Article  CAS  PubMed  Google Scholar 

  40. Labidi-Galy SI, Clauss A, Ng V, Duraisamy S, Elias KM, Piao HY, et al. Elafin drives poor outcome in high-grade serous ovarian cancers and basal-like breast tumors. Oncogene. 2015;34(3):373–83.

    Article  CAS  PubMed  Google Scholar 

  41. Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics. 2007;6(12):2212–29.

    Article  CAS  PubMed  Google Scholar 

  42. Kitteringham NR, Jenkins RE, Lane CS, Elliott VL, Park BK. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(13):1229–39.

    Article  CAS  PubMed  Google Scholar 

  43. Lee HB, Kang UB, Moon HG, Lee J, Lee KM, Yi M, et al. Development and validation of a novel plasma protein signature for breast cancer diagnosis by using multiple reaction monitoring-based mass spectrometry. Anticancer Res. 2015;35(11):6271–9.

    CAS  PubMed  Google Scholar 

  44. Kim DH, Bae J, Lee JW, Kim SY, Kim YH, Bae JY, et al. Proteomic analysis of breast cancer tissue reveals upregulation of actin-remodeling proteins and its relevance to cancer invasiveness. Proteomics Clin Appl. 2009;3(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  45. Kim Y, Kang UB, Kim S, Lee HB, Moon HG, Han W, et al. A validation study of a multiple reaction monitoring-based proteomic assay to diagnose breast cancer. J Breast Cancer. 2019;22(4):579–86.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem. 2010;56(2):177–85.

    Article  CAS  PubMed  Google Scholar 

  47. Petushkova NA, Zgoda VG, Pyatnitskiy MA, Larina OV, Teryaeva NB, Potapov AA, et al. Post-translational modifications of FDA-approved plasma biomarkers in glioblastoma samples. PLoS One. 2017;12(5):e0177427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2012;40(Database issue):D261–70.

    Article  CAS  PubMed  Google Scholar 

  49. Ryslava H, Doubnerova V, Kavan D, Vanek O. Effect of posttranslational modifications on enzyme function and assembly. J Proteome. 2013;92:80–109.

    Article  CAS  Google Scholar 

  50. Chin L, Gray JW. Translating insights from the cancer genome into clinical practice. Nature. 2008;452(7187):553–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sawyers CL. The cancer biomarker problem. Nature. 2008;452(7187):548–52.

    Article  CAS  PubMed  Google Scholar 

  52. Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature. 2008;452(7187):571–9.

    Article  CAS  PubMed  Google Scholar 

  53. Jensen ON. Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol. 2006;7(6):391–403.

    Article  CAS  PubMed  Google Scholar 

  54. Spickett CM, Pitt AR, Morrice N, Kolch W. Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochim Biophys Acta. 2006;1764(12):1823–41.

    Article  CAS  PubMed  Google Scholar 

  55. Pagel O, Loroch S, Sickmann A, Zahedi RP. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev Proteomics. 2015;12(3):235–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol. 2002;20(3):301–5.

    Article  CAS  PubMed  Google Scholar 

  57. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem. 2004;76(14):3935–43.

    Article  CAS  PubMed  Google Scholar 

  58. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics. 2008;7(4):661–71.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics. 2009;8(2):215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhan X, Desiderio DM. Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Anal Biochem. 2006;354(2):279–89.

    Article  CAS  PubMed  Google Scholar 

  61. Udeshi ND, Mertins P, Svinkina T, Carr SA. Large-scale identification of ubiquitination sites by mass spectrometry. Nat Protoc. 2013;8(10):1950–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR, Mann M, Lodish HF. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc Natl Acad Sci U S A. 2000;97(1):179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160–6.

    Article  CAS  PubMed  Google Scholar 

  64. Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, Hirabayashi J, et al. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol. 2003;21(6):667–72.

    Article  CAS  PubMed  Google Scholar 

  65. Yang Z, Harris LE, Palmer-Toy DE, Hancock WS. Multilectin affinity chromatography for characterization of multiple glycoprotein biomarker candidates in serum from breast cancer patients. Clin Chem. 2006;52(10):1897–905.

    Article  CAS  PubMed  Google Scholar 

  66. Ahn Y, Kang UB, Kim J, Lee C. Mining of serum glycoproteins by an indirect approach using cell line secretome. Mol Cells. 2010;29(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  67. Chen Y, Kwon SW, Kim SC, Zhao Y. Integrated approach for manual evaluation of peptides identified by searching protein sequence databases with tandem mass spectra. J Proteome Res. 2005;4(3):998–1005.

    Article  CAS  PubMed  Google Scholar 

  68. Kim S, Na S, Sim JW, Park H, Jeong J, Kim H, et al. MODi: a powerful and convenient web server for identifying multiple post-translational peptide modifications from tandem mass spectra. Nucleic Acids Res. 2006;34(Web Server issue):W258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li Q, Shortreed MR, Wenger CD, Frey BL, Schaffer LV, Scalf M, et al. Global post-translational modification discovery. J Proteome Res. 2017;16(4):1383–90.

    Article  CAS  PubMed  Google Scholar 

  70. Yeom J, Kabir MH, Lim B, Ahn HS, Kim SY, Lee C. A proteogenomic approach for protein-level evidence of genomic variants in cancer cells. Sci Rep. 2016;6:35305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lawrence RT, Perez EM, Hernandez D, Miller CP, Haas KM, Irie HY, et al. The proteomic landscape of triple-negative breast cancer. Cell Rep. 2015;11(4):630–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bertier G, Carrot-Zhang J, Ragoussis V, Joly Y. Integrating precision cancer medicine into healthcare-policy, practice, and research challenges. Genome Med. 2016;8(1):108.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li L, Wei Y, To C, Zhu CQ, Tong J, Pham NA, et al. Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact. Nat Commun. 2014;5:5469.

    Article  CAS  PubMed  Google Scholar 

  74. Huang KL, Li S, Mertins P, Cao S, Gunawardena HP, Ruggles KV, et al. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat Commun. 2017;8:14864.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Un-Beom Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, UB. (2021). Proteomic Interrogation in Cancer Biomarker. In: Noh, DY., Han, W., Toi, M. (eds) Translational Research in Breast Cancer. Advances in Experimental Medicine and Biology, vol 1187. Springer, Singapore. https://doi.org/10.1007/978-981-32-9620-6_15

Download citation

Publish with us

Policies and ethics