Skip to main content

Engineering Photosynthetic Microbes for Sustainable Bioenergy Production

  • Chapter
  • First Online:
Contemporary Environmental Issues and Challenges in Era of Climate Change

Abstract

The implementation of photosynthetic organisms has received tremendous attention in the last two decades in order to achieve the products of high industrial value at the minimal cost of environmental carbon dioxide, water and nutrients. The advancement of molecular biology tools including the availability of completely sequenced genome of a variety of photoautotrophs has made their genetic modification possible for it. In the past decade, there was an increase in the discovery of novel biosynthetic pathways in photosynthetic organisms, but there are several challenges that need to be reported and solved for developing an improved engineered strain with desired traits. Genetic engineering tools are required not only to introduce novel pathways in the photosynthetic organisms but also to modify host metabolism. For solar biofuels, most of the metabolic engineering attempts have been applied on cyanobacteria and microalgae, mainly focused in this chapter. To modify cyanobacteria for production of biofuel, the efficiency of photon conversation should be targeted which in turn may allow effective utilization of solar energy. A combinatorial approach for developments of these strains, their selection, genetic engineering, optimization of bioreactors and processing technology may pave the way for the production of biofuels that can ensure future energy security in a sustainable manner. In a larger perspective, efficient photosynthetic machinery provides a solution for an efficient and large-scale biofuel production which holds the promise of replacing harmful non-renewable fossil fuels, which may eventually delay a shift in global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agapakis CM, Boyle PM, Silver PA (2012) Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat Chem Biol 8(6):527

    Article  CAS  Google Scholar 

  • Al-Haj L, Lui Y, Abed R, Gomaa M, Purton S (2016) Cyanobacteria as chassis for industrial biotechnology: progress and prospects. Life 6(4):42

    Article  CAS  Google Scholar 

  • Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2(1):2006-0028

    Google Scholar 

  • Anemaet IG, Bekker M, Hellingwerf KJ (2010) Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production. Mar Biotechnol 12(6):619–629

    Article  CAS  Google Scholar 

  • Anfelt J, Hallström B, Nielsen J, Uhlén M, Hudson EP (2013) Using transcriptomics to improve butanol tolerance of Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 79(23):7419–7427

    Article  CAS  Google Scholar 

  • Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJT (2009) Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20(3):257–263

    Article  CAS  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54(383):609–622

    Article  CAS  Google Scholar 

  • Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, Jin E, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep 6:30620

    Article  CAS  Google Scholar 

  • Behler J, Vijay D, Hess WR, Akhtar MK (2018) CRISPR-based technologies for metabolic engineering in cyanobacteria. Trends Biotechnol 36(10):996–1010

    Article  CAS  Google Scholar 

  • Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi H (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4:246

    Article  Google Scholar 

  • Blanco NE, Ceccoli RD, Segretin ME, Poli HO, Voss I, Melzer M, Bravo-Almonacid FF, Scheibe R, Hajirezaei MR, Carrillo N (2011) Cyanobacterial flavodoxin complements ferredoxin deficiency in knocked-down transgenic tobacco plants. Plant J 65(6):922–935

    Article  CAS  Google Scholar 

  • Cannon M, Platz J, O’Leary M, Sookdeo C, Cannon F (1990) Organ-specific modulation of gene expression in transgenic plants using antisene RNA. Plant Mol Biol 15(1):39–47

    Article  CAS  Google Scholar 

  • Chen GE, Canniffe DP, Barnett SF, Hollingshead S, Brindley AA, Vasilev C, Bryant DA, Hunter CN (2018) Complete enzyme set for chlorophyll biosynthesis in Escherichia coli. Sci Adv 4(1):eaaq1407

    Article  CAS  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167(3):201–214

    Article  CAS  Google Scholar 

  • Chung YS, Lee JW, Chung CH (2017) Molecular challenges in microalgae towards cost-effective production of quality biodiesel. Renew Sust Energ Rev 74:139–144

    Article  CAS  Google Scholar 

  • Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5:3831

    Article  CAS  Google Scholar 

  • Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65(2):523–528

    CAS  Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19(3):235–240

    Article  CAS  Google Scholar 

  • Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103

    Article  CAS  Google Scholar 

  • Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78(8):2660–2668

    Article  CAS  Google Scholar 

  • Dunahay TG (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. BioTechniques 15(3):452–455

    CAS  Google Scholar 

  • Elhai J, Wolk CP (1988) [83] Conjugal transfer of DNA to cyanobacteria. In: Methods enzymol, vol 167. Academic, New York, pp 747–754

    Google Scholar 

  • Energy Information Administration (US) (2012) Annual energy review 2011. Government Printing Office, Washington, DC

    Google Scholar 

  • Golden SS, Brusslan J, Haselkorn R (1987) [12] Genetic engineering of the cyanobacterial chromosome. In: Methods enzymol, vol 153. Academic, New York, pp 215–231

    Google Scholar 

  • Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B (2016) Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnol J 14(8):1649–1660

    Article  CAS  Google Scholar 

  • Gong Y, Hu H, Gao Y, Xu X, Gao H (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 38(12):1879–1890

    Article  CAS  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2003) Algal nutrition–mineral nutrition. In: Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 95–115

    Chapter  Google Scholar 

  • Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22(7):346–353

    Article  CAS  Google Scholar 

  • Heiser W (1992) Optimization of biolistic transformation using the helium-driven PDS-1000/He system. Bio-Rad Bull 1688

    Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170

    Article  CAS  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  Google Scholar 

  • Huang HH, Lindblad P (2013) Wide-dynamic-range promoters engineered for cyanobacteria. J Biol Eng 7(1):10

    Article  CAS  Google Scholar 

  • Huang CH, Shen CR, Li H, Sung LY, Wu MY, Hu YC (2016) CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb Cell Factories 15(1):196

    Article  CAS  Google Scholar 

  • Ihara M, Kawano Y, Urano M, Okabe A (2013) Light driven CO2 fixation by using cyanobacterial photosystem I and NADPH-dependent formate dehydrogenase. PLoS One 8(8):e71581

    Article  CAS  Google Scholar 

  • Ikeuchi M, Tabata S (2001) Synechocystis sp. PCC 6803—a useful tool in the study of the genetics of cyanobacteria. Photosynth Res 70(1):73–83

    Article  CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27(8):631–635

    Article  CAS  Google Scholar 

  • Jacobsen JH, Frigaard NU (2014) Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab Eng 21:60–70

    Article  CAS  Google Scholar 

  • Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P (2018) Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels 11(1):185

    Article  CAS  Google Scholar 

  • Jarvis EE, Brown LM (1991) Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea. Curr Genet 19(4):317–321

    Article  CAS  Google Scholar 

  • Kaczmarzyk D, Anfelt J, Särnegrim A, Hudson EP (2014) Overexpression of sigma factor SigB improves temperature and butanol tolerance of Synechocystis sp. PCC6803. J Biotechnol 182:54–60

    Article  CAS  Google Scholar 

  • Kerr RA (2007) Global warming is changing the world. Science 316(5822):188–190

    Article  CAS  Google Scholar 

  • Kilian O, Benemann CS, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108(52):21265–21269

    Article  CAS  Google Scholar 

  • Kindle KL (1998) [3] High-frequency nuclear transformation of Chlamydomonas reinhardtii. In: Methods enzymol, vol 297. Academic, New York, pp 27–38

    Google Scholar 

  • Knoop H, Zilliges Y, Lockau W, Steuer R (2010) The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol 154(1):410–422

    Article  CAS  Google Scholar 

  • Koksharova OA, Wolk CP (2002) Novel DNA-binding proteins in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 184(14):3931–3940

    Article  CAS  Google Scholar 

  • Kumar SV, Rajam MV (2007) Induction of agrobacterium tumefaciens vir genes by the green alga, Chlamydomonas reinhardtii. Curr Sci 92:1727–1729

    CAS  Google Scholar 

  • La Russa MF, Qi LS (2015) The new state of the art: Cas9 for gene activation and repression. Mol Cell Biol 35(22):3800–3809

    Article  CAS  Google Scholar 

  • Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353–363

    Article  CAS  Google Scholar 

  • Lan EI, Ro SY, Liao JC (2013) Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 6(9):2672–2681

    Article  CAS  Google Scholar 

  • Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12(4):387–391

    Article  CAS  Google Scholar 

  • Li H, Shen CR, Huang CH, Sung LY, Wu MY, Hu YC (2016) CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng 38:293–302

    Article  CAS  Google Scholar 

  • Lin CH, Tsai ZTY, Wang D (2013) Role of antisense RNAs in evolution of yeast regulatory complexity. Genomics 102(5–6):484–490

    Article  CAS  Google Scholar 

  • Machado IM, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162(1):50–56

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Matos ÂP (2017) The impact of microalgae in food science and technology. J Am Oil Chem Soc 94(11):1333–1350

    Article  CAS  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177(4):272–280

    Article  CAS  Google Scholar 

  • Miyak M, Nagai H, Shirai M, Kurane R, Asada Y (1999) A high-copy-number plasmid capable of replication in thermophilic cyanobacteria. In: Twentieth symposium on biotechnology for fuels and chemicals. Humana Press, Totowa, NJ, pp 267–275

    Chapter  Google Scholar 

  • Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD (2008) Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19(3):228–234

    Article  CAS  Google Scholar 

  • Nasir BM, Nor-Anis N, Islam AKMA, Anuar N, Yaakob Z (2019) Genetic improvement and challenges for cultivation of microalgae for biodiesel: a review. Mini Rev Org Chem 16(3):277–289

    Article  Google Scholar 

  • Niederholtmeyer H, Wolfstädter BT, Savage DF, Silver PA, Way JC (2010) Engineering cyanobacteria to synthesize and export hydrophilic products. Appl Environ Microbiol 76(11):3462–3466

    Article  CAS  Google Scholar 

  • Oliver JW, Machado IM, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2, 3-butanediol. Proc Natl Acad Sci U S A 110(4):1249–1254

    Article  CAS  Google Scholar 

  • Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour Technol 97(11):1296–1301

    Article  CAS  Google Scholar 

  • Patel A, Matsakas L, Rova U, Christakopoulos P (2019) A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresour Technol 278:424–434

    Article  CAS  Google Scholar 

  • Peters JM, Silvis MR, Zhao D, Hawkins JS, Gross CA, Qi LS (2015) Bacterial CRISPR: accomplishments and prospects. Curr Opin Microbiol 27:121–126

    Article  CAS  Google Scholar 

  • Porter RD (1986) Transformation in cyanobacteria. Crit Rev Microbiol 13(2):111–132

    Article  CAS  Google Scholar 

  • Purton S, Szaub JB, Wannathong T, Young R, Economou CK (2013) Genetic engineering of algal chloroplasts: progress and prospects. Russ J Plant Physiol 60(4):491–499

    Article  CAS  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183

    Article  CAS  Google Scholar 

  • Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54(4):255–259

    Article  CAS  Google Scholar 

  • Robert LS, Donaldson PA, Ladaique C, Altosaar I, Arnison P, Fabijanski SF (1990) Antisense RNA inhibition of β-glucuronidase gene expression in transgenic tobacco can be transiently overcome using a heat-inducible β-glucuronidase gene construct. Bio/Technology 8(5):459

    CAS  Google Scholar 

  • Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12(3):274–281

    Article  CAS  Google Scholar 

  • Saha R, Verseput AT, Berla BM, Mueller TJ, Pakrasi HB, Maranas CD (2012) Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS One 7(10):e48285

    Article  CAS  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347

    Article  CAS  Google Scholar 

  • Sanz-Luque E, Ocaña-Calahorro F, Galván A, Fernández E, de Montaigu A (2016) Characterization of a mutant deficient for ammonium and nitric oxide signalling in the model system Chlamydomonas reinhardtii. PLoS One 11(5):e0155128

    Article  CAS  Google Scholar 

  • Savakis P, Hellingwerf KJ (2015) Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol 33:8–14

    Article  CAS  Google Scholar 

  • Shimizu Y (1996) Microalgal metabolites: a new perspective. Annu Rev Microbiol 50(1):431–465

    Article  CAS  Google Scholar 

  • Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73(5):873–882

    Article  CAS  Google Scholar 

  • Srivastava A, Brilisauer K, Rai AK, Ballal A, Forchhammer K, Tripathi AK (2017) Down-regulation of the alternative sigma factor SigJ confers a photoprotective phenotype to Anabaena PCC 7120. Plant Cell Physiol 58(2):287–297

    CAS  Google Scholar 

  • Stucken K, Ilhan RM, Dagan T, Martin WF (2012) Transformation and conjugal transfer of foreign genes into the filamentous multicellular cyanobacteria (subsection V) Fischerella and Chlorogloeopsis. Curr Microbiol 65(5):552–560

    Article  CAS  Google Scholar 

  • Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix JD, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37(3):133–138

    Article  CAS  Google Scholar 

  • Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101(15):5892–5896

    Article  CAS  Google Scholar 

  • Tsong TY (1989) Electroporation of cell membranes. In: Electroporation and electrofusion in cell biology. Springer, Boston, pp 149–163

    Chapter  Google Scholar 

  • Ungerer J, Pakrasi HB (2016) Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep 6:39681

    Article  CAS  Google Scholar 

  • Van Der Meer IM, Stam ME, van Tunen AJ, Mol JN, Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4(3):253–262

    Google Scholar 

  • Vermaas WF (1998) [20] Gene modifications and mutation mapping to study the function of photosystem II. In: Methods enzymol, vol 297. Academic Press, New York, pp 293–310

    Google Scholar 

  • Wang C, Yoon SH, Jang HJ, Chung YR, Kim JY, Choi ES, Kim SW (2011) Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng 13(6):648–655

    Article  CAS  Google Scholar 

  • Wang B, Wang J, Zhang W, Meldrum DR (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3:344

    Google Scholar 

  • Wang B, Pugh S, Nielsen DR, Zhang W, Meldrum DR (2013) Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng 16:68–77

    Article  CAS  Google Scholar 

  • Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88(6):1071–1081

    Article  CAS  Google Scholar 

  • Wannathong T, Waterhouse JC, Young RE, Economou CK, Purton S (2016) New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 100(12):5467–5477

    Article  CAS  Google Scholar 

  • Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Factories 15(1):115

    Article  CAS  Google Scholar 

  • Weyman PD, Beeri K, Lefebvre SC, Rivera J, McCarthy JK, Heuberger AL, Peers G, Allen AE, Dupont CL (2015) Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis. Plant Biotechnol J 13(4):460–470

    Article  CAS  Google Scholar 

  • Wu Q, Vermaas WF (1995) Light-dependent chlorophyll a biosynthesis upon chlL deletion in wild-type and photosystem I-less strains of the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 29(5):933–945

    Article  CAS  Google Scholar 

  • Xu W, Chen H, He CL, Wang Q (2014) Deep sequencing-based identification of small regulatory RNAs in Synechocystis sp. PCC 6803. PLoS One 9(3):e92711

    Article  CAS  Google Scholar 

  • Yang J, Pan Y, Bowler C, Zhang L, Hu H (2016) Knockdown of phosphoenolpyruvate carboxykinase increases carbon flux to lipid synthesis in Phaeodactylum tricornutum. Algal Res 15:50–58

    Article  Google Scholar 

  • Zajac G (2008) Influence of FAME addition to diesel fuel on exhaust fumes opacity of diesel engine. Int Agrophys 22:179–183

    CAS  Google Scholar 

  • Zeman FS, Keith DW (2008) Carbon neutral hydrocarbons. Philos Trans A Math Phys Eng Sci 366(1882):3901–3918

    Article  CAS  Google Scholar 

  • Zhang X, Wang J, Cheng Q, Zheng X, Zhao G, Wang J (2017) Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov 3:17018

    Article  CAS  Google Scholar 

  • Zhou J, Li Y (2010) Engineering cyanobacteria for fuels and chemicals production. Protein Cell 1(3):207–210

    Article  CAS  Google Scholar 

Download references

Acknowledgement

AS is supported by Ministry of Education, Youth and Sports of the Czech Republic (Project: LO1416).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, A., Villalobos, M.B., Singh, R.K. (2020). Engineering Photosynthetic Microbes for Sustainable Bioenergy Production. In: Singh, P., Singh, R., Srivastava, V. (eds) Contemporary Environmental Issues and Challenges in Era of Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-32-9595-7_10

Download citation

Publish with us

Policies and ethics