Skip to main content

Frost Measurement Sensors for Demand Defrost Control Systems: Purposed Applications in Evaporators

  • Conference paper
  • First Online:
Transactions on Engineering Technologies (WCE 2018)

Included in the following conference series:

Abstract

It is widely known that defrosting operation on commercial refrigerators is one of the main causes of inefficiency on these systems. Several defrosting methods are used nowadays, but the most commonly used are still time-controlled defrosting, usually by either electric resistive heating or reverse cycle, as most demand defrost methods are usually complex, expensive or unreliable. Demand defrost can work by either predicting frost formation by processing measured conditions (fin surface temperature, air humidity and air velocity) and/or frost accumulation symptoms such as pressure drop and refrigerant properties. Other way of knowing when to defrost is to directly measure the frost formation using sensors such as photoelectric, capacitive or resistive. This review gathers some of the methods that can be used for directly measuring frost accumulation on the evaporator fin surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Popovac, M., Seichter, S., Benovsky, P.: Numerical analysis of the frosting performance of the air-side of a heat pump. In: 24th International Congress of Refrigeration, Yokohama, Japan (2015)

    Google Scholar 

  2. Guo, X.-M., Chen, Y.-G., Wang, W.-H., Chen, C.-Z.: Experimental study on frost growth and dynamic performance of air source heat pump system. Appl. Therm. Eng. 28, 2267–2278 (2008)

    Article  Google Scholar 

  3. Melo, C., Hermes, C.J., Silva, D.L.: Experimental study of frost accumulation on fan-supplied tube-fin evaporators. Appl. Therm. Eng. 31, 1013–1020 (2011)

    Article  Google Scholar 

  4. Hermes, C.J.L., Piucco, R.O., Barbosa Jr., J.R., Melo, C.: A study of frost growth and densification on flat surfaces. Exp. Thermal Fluid Sci. 33, 371–379 (2009)

    Article  Google Scholar 

  5. Melo, C., Hermes, C.J., Silva, D.L.: Effect of frost morphology on the thermal-hydraulic performance of fan-supplied tube-fin evaporators. Appl. Thermal Eng. 1060–1068 (2017)

    Google Scholar 

  6. Kwan-Soo, L., Woo-Seung, K., Tae-Hee, L.: A one-dimensional model for frost formation on a cold flat surface. Heat Mass Transfer. 40(18), 4359–4365 (1997)

    Article  MATH  Google Scholar 

  7. Şahin, Z.: An analytical study of frost nucleation and growth during the crystal growth period. Heat Mass Transfer. 30, 321–330 (1995)

    Article  Google Scholar 

  8. Lüer, A., Beer, H.: Frost deposition in a parallel plate channel under laminar flow conditions. Int. J. Thermal Sci. 39, 85–95 (2000)

    Article  Google Scholar 

  9. Yang, D.-K., Lee, K.-S., Cha, D.-J.: Frost formation on a cold surface under turbulent flow. Int. J. Refrig. 29, 164–169 (2006)

    Article  Google Scholar 

  10. Wang, W., Xiao, J., Guo, Q.C., Lu, W.P., Feng, Y.C.: Field test investigation of the characteristics for the air source heat pump under two typical mal-defrost phenomena. Appl. Energy. 88, 4470–4480 (2011)

    Article  Google Scholar 

  11. Wang, F., Liang, C., Zhang, X.: Research of anti-frosting technology in refrigeration and air conditioning fields: A review. Renew. Sust. Energ. Rev. 81, 707–722 (2017)

    Article  Google Scholar 

  12. Sheng, W., Pengpeng, L., Chaobin, D., Guixin, L.: Review of restraint frost method on cold surface. Renew. Sust. Energ. Rev. 806–813 (2017)

    Article  Google Scholar 

  13. Olcay, B., Avci, P., Bayrak, E., Dalkılıç, A.S., Wongwises, S.: Experimental investigation of frost issue on various evaporators having different fin types. Int. Commun. Heat Mass Transfer. 86, 190–198 (2017)

    Article  Google Scholar 

  14. Liu, Y., Kulacki, F.A.: An experimental study of defrost on treated surfaces: Effect of frost slumping. Int. J. Heat Mass Transfer. 119, 880–890 (2018)

    Article  Google Scholar 

  15. Chu, F., Wu, X., Zhu, Y.: Defrosting on horizontal hydrophobic surfaces and the shrink angle. Int. J. Refrig. 71, 1–7 (2016)

    Article  Google Scholar 

  16. Wang, F., Liang, C., Zhang, Y., Zhang, X.: Defrosting performance of superhydrophobic fin-tube heat exchanger. Appl. Thermal Eng. 113, 229–237 (2017)

    Article  Google Scholar 

  17. Liu, X., Yu, J., Yan, G.: A numerical study on the air-side heat transfer of perforated finned-tube heat exchangers with large fin pitches. Int. J. Heat Mass Transfer. 100, 199–207 (2016)

    Article  Google Scholar 

  18. Wu, X., Hu, S., Chu, F.: Experimental study of frost formation on cold surfaces with various fin layouts. Appl. Thermal Eng. 95–105 (2016)

    Article  Google Scholar 

  19. Joppolo, M., Molinaroli, L., De Antonellis, S., Merlo, U.: Experimental analysis of frost formation with the presence of an electric field on fin and tube evaporator. Int. J. Refrig. 35, 468–474 (2012)

    Article  Google Scholar 

  20. Gou, Y.-J., Liu, Z.-L., Liu, Y.-M., Huang, L.-Y., Zhang, M.: The study of frost formation under magnetic field. J. Eng. Thermophys. 30(3), 465–467 (2009)

    Google Scholar 

  21. Li, D., Chen, Z., Shi, M.: Effect of ultrasound on frost formation on a cold flat surface in atmospheric air flow. Exp. Thermal Fluid Sci. 34, 1247–1252 (2010)

    Article  Google Scholar 

  22. Gin, B., Farid, M.M., Bansal, P.K.: Effect of door opening and defrost cycle on a freezer with phase change panels. Energy Convers. Manag. 51, 2698–2706 (2010)

    Article  Google Scholar 

  23. Ameen, F.R., Coney, J.E.R., Sheppard, C.G.W.: Experimental study of warm-air defrosting of heat-pump evaporators. Int. J. Refrig. 16(1), 13–18 (1993)

    Article  Google Scholar 

  24. Yin, H.-J., Yang, Z., Chen, A.-Q., Zhang, N.: Experimental research on a novel cold storage defrost method based on air bypass circulation and electric heater. Energy. 37, 623–631 (2012)

    Article  Google Scholar 

  25. Song, M., Deng, S., Oan, D., Mao, N.: An experimental study on the effects of downwards flowing of melted frost over a vertical multi-circuit outdoor coil in an air source heat pump on defrosting performance during reverse cycle defrosting. Appl. Thermal Eng. 67, 258–265 (2014)

    Article  Google Scholar 

  26. Anand, N.K., Schliesing, J.S., O’Neal, D.L., Peterson, K.T.: Effects of outdoor coil fan pre-start on pressure transients during the reverse cycle defrost of a heat pump. ASHRAE Trans. 95(2), 699–704 (1989)

    Google Scholar 

  27. Choi, H.-J., Kim, B.-S., Kang, D., Kim, K.C.: Defrosting method adopting dual hot gas bypass for an air-to-air heat pump. Appl. Energy. 88, 4544–4555 (2011)

    Article  Google Scholar 

  28. Abdel-Wahed, R.M., Hifni, M.A., Sherif, S.A.: Hot water defrosting of a horizontal flat plate cooling surface. Int. J. Refrig. 6(3), 152–154 (1983)

    Article  Google Scholar 

  29. Snobe, N., Fukiba, K., Sato, S., Yoshimura, Y.: Method for defrosting heat exchangers using an air-particle jet. Int. J. Refrig. 60, 261–269 (2015)

    Article  Google Scholar 

  30. Tan, H., Xu, G., Tao, T., Zhang, S., Luo, A.: Investigation on the ultrasonic propagation mechanism and its application on air-source heat pump defrosting. Appl. Thermal Eng. 107, 479–492 (2016)

    Article  Google Scholar 

  31. Li, D., Chen, Z.: Experimental study on instantaneously shedding frozen water droplets from cold vertical surface by ultrasonic vibration. Exp. Thermal Fluid Sci. 53, 17–25 (2014)

    Article  Google Scholar 

  32. L. Barelli, G. Bidini, S. Moraglia: Development of an innovative defrosting system for commercial chiller evaporators through piezoelectric elements application. In: International Mechanical Engineering Congress and Exposition, Anaheim, California, USA (2004)

    Google Scholar 

  33. Amer, M., Wang, C.-C.: Review of defrosting methods. Renew. Sustain. Energy Rev. 53–74 (2017)

    Article  Google Scholar 

  34. Xiao, J., Wang, W., Guo, Q.C., Zhao, Y.H.: An experimental study of the correlation for predicting the frost height in applying the photoelectric technology. Int. J. Refrig. 33, 1006–1014 (2010)

    Article  Google Scholar 

  35. Jiang, Y., Dong, J., Qu, M., Deng, S., Yao, Y.: A novel defrosting control method based on the degree of refrigerant superheat for air source heat pump. Int. J. Refrig. 36, 2278–2288 (2013)

    Article  Google Scholar 

  36. Tassou, S.A., Datta, D., Marriott, D.: Frost formation and defrost control parameters for open multideck refrigerated food display cabinets. In: Proceedings of the Institution of Mechanical Engineers – Part A – Power & Energy, pp. 213–222 (2001)

    Google Scholar 

  37. Cui, J., Li, W.Z., Liu, Y., Jiang, Z.Y.: A new time- and space-dependent model for predicting frost formation. Appl. Thermal Eng. 31, 447–457 (2011)

    Article  Google Scholar 

  38. Buick, T.R., McMullan, J.T., Morgan, R., Murray, R.B.: Ice detection in heat pumps and coolers. Energy Res. 2, 85–98 (1978)

    Article  Google Scholar 

  39. Jarrett, J.H.: A new demand defrost control for domestic forced draft refrigerator freezers and freezers. IEEE Trans. Ind. Appl. IA-8(3), 356–364 (1972)

    Article  Google Scholar 

  40. Lawrence, J.M.W., Parker, B.C.: Defrost control method and apparatus. United States of America Patente 5,813,242, 29 September 1998

    Google Scholar 

  41. Muller, D.: A new concept for defrosting refrigeration plants. Kalte. 28(2), 52–54 (1975)

    Google Scholar 

  42. Datta, D., Tassou, S.A., Marriott, D.: Frost prediction on evaporator coils of supermarket display cabinets using artificial neural networks. In: Proceedings of Clima 2000 Conference, Brussels (1997)

    Google Scholar 

  43. Kalogirou, S.A.: Applications of artificial neural-networks for energy systems. Appl. Energy. 67, 17–35 (2000)

    Article  Google Scholar 

  44. Bagyaveereswaran, V., Subramanian, S.S., Anitha, R.: Smart defrost control for refrigeration system. Int. J. Appl. Eng. Res. 12(22), 12202–12207 (2017)

    Google Scholar 

  45. Cao, Z.-K., Zhang, C.-X., Gu, B.: Application of a support vector machine algorithm for improving effects of defrosting of commercial refrigerated display cabinets in supermarkets. HVAC&R Re. 19(3), 230–241 (2013)

    Google Scholar 

  46. Sengupta, S., Sherif, S.A., Wong, K.V.: Empirical heat transfer and frost thickness correlations during frost deposition on a cylinder in cross-flow in the transient regime. Int. J. Energy Res. 22, 615–624 (1988)

    Article  Google Scholar 

  47. Kandula, M.: Frost growth and densification on a flat surface in laminar flow with variable humidity. Int. Commun. Heat Mass Transfer. 39, 1030–1034 (2012)

    Article  Google Scholar 

  48. Ge, Y., Sun, Y., Wang, W., Zhu, J., Li, L., Liu, J.: Field test study of a novel defrosting control method for air-source heat pumps by applying tube encircled photoelectric sensors. Int. J. Refrig. 66, 133–144 (2016)

    Article  Google Scholar 

  49. Wang, W., Xiao, J., Feng, Y., Guo, Q., Wang, L.: Characteristics of an air source heat pump with novel photoelectric sensors during periodic frost defrost cycles. Appl. Thermal Eng. 50, 117–186 (2013)

    Google Scholar 

  50. Ge, J., Ye, L., Zou, J.: A novel fiber-optic ice sensor capable of identifying ice type accurately. Sens. Actuators A. 175, 35–42 (2012)

    Article  Google Scholar 

  51. Roy, S., Izad, A., DeAnna, R.G., Mehregany, M.: Smart ice detection systems based on resonant piezoelectric transducers. Sens. Actuators A. 69, 243–250 (1998)

    Article  Google Scholar 

  52. Toriano, A., Pasero, E., Mesin, L.: New system for detecting road ice formation. IEEE Trans. Instrum. Meas. 60(3), 1091–1101 (2011)

    Article  Google Scholar 

  53. Gaspar, P.D., Silva, P.D., Nunes, J., Andrade, L.P.: Monitoring device of ice formation in evaporator surface of refrigeration systems. In: VI Ibero-American Refrigeration Sciences and Technologies, Coimbra, Portugal (2016)

    Google Scholar 

  54. Caetano, D., Gaspar, P.D., da Silva, P.D.: Experimental testing of a resistive sensor for monitoring frost formation in refrigeration systems. In: X Iberian Congress & VII congress on Ibero-American Refrigeration Sciences and Technologies, Valencia (2018)

    Google Scholar 

  55. Qu, K., Komori, S., Jiang, Y.: Local variation of frost layer thickness and morphology. Int. J. Thermal Sci. 45, 116–123 (2006)

    Article  Google Scholar 

  56. Martim Lima de Aguiar, Pedro Dinis Gaspar, Pedro Dinho da Silva: Frost measurement methods for demand defrost control systems: A review. In: Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 2018, London, UK, pp. 671–677, 4–6 July 2018

    Google Scholar 

Download references

Acknowledgment

This work has been supported by the project Centro-01-0145-FEDER-000017 – EMaDeS – Energy, Materials and Sustainable Development, co-financed by the Portugal 2020 Program (PT 2020), within the Regional Operational Program of the Center (CENTRO 2020) and the European Union through the European Regional Development Fund (ERDF). The authors wish to thank the opportunity and financial support that permitted to carry on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martim Lima de Aguiar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Aguiar, M.L., Gaspar, P.D., da Silva, P.D. (2019). Frost Measurement Sensors for Demand Defrost Control Systems: Purposed Applications in Evaporators. In: Ao, SI., Gelman, L., Kim, H. (eds) Transactions on Engineering Technologies. WCE 2018. Springer, Singapore. https://doi.org/10.1007/978-981-32-9531-5_12

Download citation

Publish with us

Policies and ethics