Skip to main content

Nanobiotechnology: Current and Future Perspectives in Combating Microbial Pathogenesis

  • Chapter
  • First Online:
Pathogenicity and Drug Resistance of Human Pathogens

Abstract

Nanobiotechnology is the bridge between biology and chemistry interface, with disparate biomedical as well as microbiological applications. Nanomaterials, nanoconjugates and nanowires have extensively been used for the detection of diverse pathological conditions as well as in the chemotherapy of the diagnosed disorders. Targeted drug and gene delivery has been shown to produce encouraging results. In current scenario, nosocomial infections have been affecting developing countries with a high frequency. Eradication of these infections may be achieved by introduction of novel nanodrugs effective for longer duration of time as well as with fewer side effects. Some peculiar properties of nanostructures such as cost-effectiveness, biocompatibility, mammalian cell compatibility and less toxicity to the environment make these nanoparticles as major candidates for various therapeutic purposes. In agriculture too, nanoparticles synthesized from marine sources or several bacteria, fungi, algae, actinomycetes and biofungicides have been shown to possess the potential to prevent the crops from pests. Nanobiotechnology provides a platform for designing and developing nanomaterials with promising effects that can be delivered at specific target sites. Combining nanoscience with biotechnology provides a broad term for exploring the design and synthesis of novel molecules which can further be inculcated in various studies. At present, microbial infections are playing a major havoc due to improper use of antibiotics in hospitals, improper use of pesticides in fields, poor sanitation as well as lack of awareness among population. In this chapter, we mainly focus on the areas affected by nanobiotechnology, such as how microbial population can be affected, current trends in microbial infection inflation rate, various nanomaterials used to combat microbial infections as well as their future aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrara, S. (2010). Nano-bio-technology and sensing chips: New systems for detection in personalized therapies and cell biology. Sensors, 10(1), 526–543.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fakruddin, M., Hossain, Z., & Afroz, H. (2012). Prospects and applications of nanobiotechnology: A medical perspective. Journal of Nanobiotechnology, 10(1), 31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khan, I., Khan, M., Umar, M. N., & Oh, D.-H. (2015). Nanobiotechnology and its applications in drug delivery system: A review. IET Nanobiotechnology, 9(6), 396–400.

    Article  CAS  PubMed  Google Scholar 

  4. Davis, S. (1997). Biomedical applications of nanotechnology—implications for drug targeting and gene therapy. Trends in Biotechnology, 15(6), 217–224.

    Article  CAS  PubMed  Google Scholar 

  5. Hart, S. L. (2005). Lipid carriers for gene therapy. Current Drug Delivery, 2(4), 423–428.

    Article  CAS  PubMed  Google Scholar 

  6. Touhami, A. (2014). Biosensors and nanobiosensors: Design and applications. Nanomedicine, 15, 374–403.

    Google Scholar 

  7. Maine, E., Thomas, V., Bliemel, M., Murira, A., & Utterback, J. (2014). The emergence of the nanobiotechnology industry. Nature Nanotechnology, 9(1), 2.

    Article  CAS  PubMed  Google Scholar 

  8. Morais, M. G. D., Martins, V. G., Steffens, D., Pranke, P., & da Costa, J. A. V. (2014). Biological applications of nanobiotechnology. Journal of Nanoscience and Nanotechnology, 14(1), 1007–1017.

    Article  CAS  PubMed  Google Scholar 

  9. Sahoo, S. K., & Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 8(24), 1112–1120.

    Article  CAS  PubMed  Google Scholar 

  10. Sahoo, S., Parveen, S., & Panda, J. (2007). The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 20–31.

    Article  CAS  Google Scholar 

  11. Crommelin, D. J., Storm, G., Jiskoot, W., Stenekes, R., Mastrobattista, E., & Hennink, W. E. (2003). Nanotechnological approaches for the delivery of macromolecules. Journal of Controlled Release, 87(1–3), 81–88.

    Article  CAS  PubMed  Google Scholar 

  12. Kumar, N., & Kumbhat, S. (2016). Essentials in nanoscience and nanotechnology. Hoboken: Wiley.

    Book  Google Scholar 

  13. Mahato, M., Sharma, A. K., & Kumar, P. (2017). Nanoparticles for DNA delivery. ACS Applied Materials & Interfaces, 9, 11546–11556.

    Article  CAS  Google Scholar 

  14. Watson, A., Wu, X., & Bruchez, M. (2003). Lighting up cells with quantum dots. BioTechniques, 34(2), 296–303.

    Article  CAS  PubMed  Google Scholar 

  15. C D. Nanobiotechnology: Relevance in Microbiology 2019.

    Google Scholar 

  16. Daniel, M.-C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293–346.

    Article  CAS  PubMed  Google Scholar 

  17. Resham, S., Khalid, M., & Kazi, A. G. (2015). Nanobiotechnology in agricultural development. PlantOmics: The omics of plant science (pp. 683–698). Berlin: Springer.

    Google Scholar 

  18. Singh, S., Singh, B. K., Yadav, S., & Gupta, A. (2015). Applications of nanotechnology in agricultural and their role in disease management. Journal of Nanoscience and Nanotechnology, 5(1), 1–5.

    Google Scholar 

  19. Singh, J. S., Pandey, V. C., & Singh, D. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems & Environment, 140(3–4), 339–353.

    Article  Google Scholar 

  20. Arnold, A. E., Lamit, L. J., Gehring, C. A., Bidartondo, M. I., & Callahan, H. (2010). Interwoven branches of the plant and fungal trees of life. New Phytologist, 185(4), 874–878.

    Article  CAS  PubMed  Google Scholar 

  21. Yao, K. S., Li, S., Tzeng, K., Cheng, T. C., Chang, C. Y., Chiu, C., et al. (2009). Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. In: Advanced materials research. Trans Tech Publ.

    Google Scholar 

  22. Young, M., Debbie, W., Uchida, M., & Douglas, T. (2008). Plant viruses as biotemplates for materials and their use in nanotechnology. Annual Review of Phytopathology, 46, 361–384.

    Article  CAS  PubMed  Google Scholar 

  23. Kühr, S., Schneider, S., Meisterjahn, B., Schlich, K., Hund-Rinke, K., & Schlechtriem, C. (2018). Silver nanoparticles in sewage treatment plant effluents: Chronic effects and accumulation of silver in the freshwater amphipod Hyalella azteca. Environmental Sciences Europe, 30(1), 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y. Y. (2015). Graphene based transistors and supported lipid bilayer. Irvine: University of California-Irvine Irvine United States.

    Google Scholar 

  25. Zhao, X., Liu, W., Cai, Z., Han, B., Qian, T., & Zhao, D. (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Research, 100, 245–266.

    Article  CAS  PubMed  Google Scholar 

  26. Prasad, R., Pandey, R., & Barman, I. (2016). Engineering tailored nanoparticles with microbes: Quo vadis? Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8(2), 316–330.

    PubMed  Google Scholar 

  27. Yang, C., Shi, F., Li, C., Wang, Y., Wang, L., & Yang, Z. (2017). Single dose of protein vaccine with peptide nanofibers as adjuvants elicits long-lasting antibody titer. ACS Biomaterials Science Engineering, 4(6), 2000–2006.

    Article  CAS  PubMed  Google Scholar 

  28. Neethirajan, S., & Jayas, D. S. (2011). Nanotechnology for the food and bioprocessing industries. Food and Bioprocess Technology, 4(1), 39–47.

    Article  CAS  PubMed  Google Scholar 

  29. Salmerón, I. (2017). Fermented cereal beverages: From probiotic, prebiotic and synbiotic towards nanoscience designed healthy drinks. Letters in Applied Microbiology, 65(2), 114–124.

    Article  PubMed  Google Scholar 

  30. Alvarado, K., Bolaños, M., Camacho, C., Quesada, E., & Vega-Baudrit, J. (2019). Nanobiotechnology in agricultural sector: Overview and novel applications. Journal of Biomaterials and Nanobiotechnology, 10(02), 120.

    Article  Google Scholar 

  31. Horner, S. R., Mace, C. R., Rothberg, L. J., & Miller, B. L. (2006). A proteomic biosensor for enteropathogenic E. coli. Biosensors and Bioelectronics, 21(8), 1659–1663.

    Article  CAS  PubMed  Google Scholar 

  32. Carrasco, L. D. M., Bertolucci, R., Jr., Ribeiro, R. T., Sampaio, J. L., & Carmona-Ribeiro, A. M. (2016). Cationic nanostructures against foodborne pathogens. Frontiers in Microbiology, 7, 1804.

    PubMed  PubMed Central  Google Scholar 

  33. Shukla, S., Haldorai, Y., Hwang, S. K., Bajpai, V. K., Huh, Y. S., & Han, Y.-K. (2017). Current demands for food-approved liposome nanoparticles in food and safety sector. Frontiers in Microbiology, 8, 2398.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gkana, E. N., Doulgeraki, A. I., Chorianopoulos, N. G., & Nychas, G.-J. E. (2017). Anti-adhesion and anti-biofilm potential of organosilane nanoparticles against foodborne pathogens. Frontiers in Microbiology, 8, 1295.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C., & Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. Science, 295(5559), 1487.

    Article  CAS  PubMed  Google Scholar 

  36. Taylor, E., & Webster, T. J. (2011). Reducing infections through nanotechnology and nanoparticles. International Journal of Nanomedicine, 6, 1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Suci, P. A., Berglund, D. L., Liepold, L., Brumfield, S., Pitts, B., Davison, W., et al. (2007). High-density targeting of a viral multifunctional nanoplatform to a pathogenic, biofilm-forming bacterium. Chemistry & Biology, 14(4), 387–398.

    Article  CAS  Google Scholar 

  38. Taheri, S., Vasilev, K., & Majewski, P. (2015). Silver nanoparticles: Synthesis, antimicrobial coatings, and applications for medical devices. Recent Patents on Materials Science, 8(2), 166–175.

    Article  CAS  Google Scholar 

  39. Ramasamy, M., & Lee, J. (2016). Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Research International, 2016.

    Google Scholar 

  40. Bakhshinejad, B., & Sadeghizadeh, M. (2014). Bacteriophages and development of nanomaterials for neural regeneration. Neural Regeneration Research, 9(22), 1955.

    PubMed  PubMed Central  Google Scholar 

  41. Chung, W.-J., Merzlyak, A., Yoo, S. Y., & Lee, S.-W. (2010). Genetically engineered liquid-crystalline viral films for directing neural cell growth. Langmuir, 26(12), 9885–9890.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu, W., O’brien, C., O’brien, J. R., & Zhang, L. G. (2014). 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine, 9(6), 859–875.

    Article  CAS  PubMed  Google Scholar 

  43. Kehoe, J. W., & Kay, B. K. (2005). Filamentous phage display in the new millennium. Chemical Reviews, 105(11), 4056–4072.

    Article  CAS  PubMed  Google Scholar 

  44. Gray, B. P., & Brown, K. C. (2013). Combinatorial peptide libraries: Mining for cell-binding peptides. Chemical Reviews, 114(2), 1020–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Su, M.-T., Venkatesh, T. V., & Bodmer, R. (1998). Large-and small-scale preparation of bacteriophage λ lysate and DNA. BioTechniques, 25(1), 44–46.

    Article  CAS  PubMed  Google Scholar 

  46. Dover, J. E., Hwang, G. M., Mullen, E. H., Prorok, B. C., & Suh, S.-J. (2009). Recent advances in peptide probe-based biosensors for detection of infectious agents. Journal of Microbiological Methods, 78(1), 10–19.

    Article  CAS  PubMed  Google Scholar 

  47. Liandris, E., Gazouli, M., Andreadou, M., Sechi, L. A., Rosu, V., & Ikonomopoulos, J. (2011). Detection of pathogenic mycobacteria based on functionalized quantum dots coupled with immunomagnetic separation. PLoS One, 6(5), e20026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yaohua, H., Chengcheng, W., Bing, B., Mintong, L., Wang, R., & Li, Y. (2014). Detection of Staphylococcus aureus using quantum dots as fluorescence labels. International Journal of Agricultural and Biological Engineering, 7(1), 77–83.

    Google Scholar 

  49. Singh, A. K., Prakash, P., Singh, R., Nandy, N., Firdaus, Z., Bansal, M., et al. (2017). Curcumin quantum dots mediated degradation of bacterial biofilms. Frontiers in Microbiology, 8, 1517.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen, C., Wang, P., & Li, L. (2016). Applications of bacterial magnetic nanoparticles in nanobiotechnology. Journal of Nanoscience and Nanotechnology, 16(3), 2164–2171.

    Article  CAS  PubMed  Google Scholar 

  51. Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., et al. (2002). The cellular and molecular basis of hyperthermia. Critical reviews in Oncology/Hematology, 43(1), 33–56.

    Article  PubMed  Google Scholar 

  52. Willner, I., Basnar, B., & Willner, B. (2007). Nanoparticle–enzyme hybrid systems for nanobiotechnology. The FEBS Journal, 274(2), 302–309.

    Article  CAS  PubMed  Google Scholar 

  53. Li, J., Angsantikul, P., Liu, W., Esteban-Fernández de Ávila, B., Chang, X., Sandraz, E., et al. (2018). Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats. Advanced Materials, 30(2), 1704800.

    Article  CAS  Google Scholar 

  54. Sandhiya, S., Dkhar, S. A., & Surendiran, A. (2009). Emerging trends of nanomedicine–an overview. Fundamental & Clinical Pharmacology, 23(3), 263–269.

    Article  CAS  Google Scholar 

  55. Freitas, R. A., Jr. (2005). Microbivores: Artificial mechanical phagocytes using digest and discharge protocol. Journal of Evolution and Technology, 14, 1–52.

    Google Scholar 

  56. Saadeh, Y., & Vyas, D. (2014). Nanorobotic applications in medicine: Current proposals and designs. American Journal of Robotic Surgery, 1(1), 4–11.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X., Lara, H. H., et al. (2005). Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 3(1), 6.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., et al. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856–8874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zielińska-Górska, M. K., Sawosz, E., Górski, K., & Chwalibog, A. (2017). Does nanobiotechnology create new tools to combat microorganisms? Nanotechnology Reviews, 6(2), 171–189.

    Article  Google Scholar 

  60. Rose, S., Prevoteau, A., Elzière, P., Hourdet, D., Marcellan, A., & Leibler, L. (2014). Nanoparticle solutions as adhesives for gels and biological tissues. Nature, 505(7483), 382.

    Article  CAS  PubMed  Google Scholar 

  61. Venkatpurwar, V., & Pokharkar, V. (2011). Green synthesis of silver nanoparticles using marine polysaccharide: Study of in-vitro antibacterial activity. Materials Letters, 65(6), 999–1002.

    Article  CAS  Google Scholar 

  62. Singh, M., Kalaivani, R., Manikandan, S., Sangeetha, N., & Kumaraguru, A. (2013). Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Applied Nanoscience, 3(2), 145–151.

    Article  CAS  Google Scholar 

  63. Alenazi, N. M. K. (2018). Green nanoparticles: Biogenerators; mechanistic aspects of biosynthesis; potential applications and future prospective.

    Google Scholar 

  64. Kaushal, M. (2018). Role of microbes in plant protection using intersection of nanotechnology and biology. In Nanobiotechnology applications in plant protection (pp. 111–135). Cham: Springer.

    Chapter  Google Scholar 

  65. Bhattacharyya, A., Duraisamy, P., Govindarajan, M., Buhroo, A. A., & Prasad, R. (2016). Nano-biofungicides: Emerging trend in insect pest control. In Advances and applications through fungal nanobiotechnology (pp. 307–319). Cham: Springer.

    Chapter  Google Scholar 

  66. Tamara, F., Lin, C., Mi, F.-L., & Ho, Y.-C. (2018). Antibacterial effects of chitosan/cationic peptide nanoparticles. Nanomaterials, 8(2), 88.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gagan Dhawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, I., Gautam, H.K., Dhawan, G. (2019). Nanobiotechnology: Current and Future Perspectives in Combating Microbial Pathogenesis. In: Hameed, S., Fatima, Z. (eds) Pathogenicity and Drug Resistance of Human Pathogens. Springer, Singapore. https://doi.org/10.1007/978-981-32-9449-3_17

Download citation

Publish with us

Policies and ethics