Skip to main content

Tensile Strength of 3D Printed PLA Part

  • Conference paper
  • First Online:
Advances in Additive Manufacturing and Joining

Abstract

Fused deposition modeling (FDM)-based 3D printing is one of the most widely used additive manufacturing (AM) techniques that can build a part with any complexity. FDM-processed parts have a wide range of applications in various fields such as aerospace, medical, automobile, and consumer part industries. However, its application may be restricted due to poor mechanical properties of parts because of the layer-by-layer forming of parts. Due to this, the application of FDM-processed part restricted as end-use functional parts. In the present investigation, an attempt has been made to study the effect of key process variables on the tensile strength of the printed part. Three process variables viz. raster angle, raster width, and layer height have been varied to study their influence on the tensile strength of the PLA part. Further, microscopic examination was carried out to understand the effect of process variables on the fractured surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASTM: F2792-12 Standard Terminology for Additive Manufacturing Technologies. ASTM International, USA (2012)

    Google Scholar 

  2. Chua, C.K., Leong, K.F.: 3D Printing and Additive Manufacturing: Principles and Applications of Rapid Prototyping. World Scientific Publishing Co Inc., Singapore (2014)

    Google Scholar 

  3. Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies. Springer, New York (2010)

    Google Scholar 

  4. Dong, Y., Milentis, J., Pramanik, A.: Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid)(PLA) and PLA/wood fibre composites. Adv. Manuf. 6(1), 71–82 (2018). https://doi.org/10.1007/s40436-018-0211-3

    Article  Google Scholar 

  5. Rankouhi, B., Javadpour, S., Delfanian, F., Letcher, T.: Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J. Fail. Anal. Prev. 16(3), 467–481 (2016). https://doi.org/10.1007/s11668-016-0113-2

    Article  Google Scholar 

  6. Uddin, M.S., Sidek, M.F.R., Faizal, M.A., Ghomashchi, R., Pramanik, A.: Evaluating mechanical properties and failure mechanisms of fused deposition modeling acrylonitrile butadiene styrene parts. J. Manuf. Sci. Eng. 139(8), 081018 (2017). https://doi.org/10.1115/1.4036713

    Article  Google Scholar 

  7. Li, H., Wang, T., Sun, J., Yu, Z.: The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties. Rapid Prototyping J. 24(1), 80–92 (2018). https://doi.org/10.1108/RPJ-06-2016-0090

    Article  Google Scholar 

  8. Aliheidari, N., Tripuraneni, R., Ameli, A., Nadimpalli, S.: Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polym. Test. 60, 94–101 (2017). https://doi.org/10.1016/j.polymertesting.2017.03.016

    Article  Google Scholar 

  9. Wang, L., Gramlich, W.M., Gardner, D.J.: Improving the impact strength of poly (lactic acid)(PLA) in fused layer modeling (FLM). Polymer 114, 242–248 (2017). https://doi.org/10.1016/j.polymer.2017.03.011

    Article  Google Scholar 

  10. Tymrak, B.M., Kreiger, M., Pearce, J.M.: Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 58, 242–246 (2014). https://doi.org/10.1016/j.matdes.2014.02.038

  11. Lederle, F., Meyer, F., Brunotte, G.P., Kaldun, C., Hübner, E.G.: Improved mechanical properties of 3D-printed parts by fused deposition modeling processed under the exclusion of oxygen. Prog. Add. Manuf. 1(1–2), 3–7 (2016). https://doi.org/10.1007/s40964-016-0010-y

    Article  Google Scholar 

  12. Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Investigation on the flexural creep stiffness behavior of PC–ABS material processed by fused deposition modeling using response surface definitive screening design. JOM 69(3), 498–505 (2017). https://doi.org/10.1007/s11837-016-2228-z

    Article  Google Scholar 

  13. Ahn, S.H., Montero, M., Odell, D., Roundy, S., Wright, P.K.: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping J. 8(4), 248–257 (2002). https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  14. Torrado, A.R., Roberson, D.A.: Failure analysis and anisotropy evaluation of 3D-printed tensile test specimens of different geometries and print raster patterns. J. Fail. Anal. Prev. 16(1), 154–164 (2016). https://doi.org/10.1007/s11668-016-0067-4

    Article  Google Scholar 

  15. Lanzotti, A., Grasso, M., Staiano, G., Martorelli, M.: The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping J. 21(5), 604–617 (2015). https://doi.org/10.1108/RPJ-09-2014-0135

    Article  Google Scholar 

  16. Huang, B., Singamneni, S.: Raster angle mechanics in fused deposition modelling. J. Compos. Mater. 49(3), 363–383 (2015). https://doi.org/10.1177/0021998313519153

    Article  Google Scholar 

  17. Tanikella, N.G., Wittbrodt, B., Pearce, J.M.: Tensile strength of commercial polymer materials for fused filament fabrication 3D printing. Add. Manuf. 15, 40–47 (2017). https://doi.org/10.1016/j.addma.2017.03.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpesh R. Rajpurohit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rajpurohit, S.R., Dave, H.K. (2020). Tensile Strength of 3D Printed PLA Part. In: Shunmugam, M., Kanthababu, M. (eds) Advances in Additive Manufacturing and Joining. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9433-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9433-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9432-5

  • Online ISBN: 978-981-32-9433-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics