Skip to main content

Abstract

Tuberculosis is not just a basic clinical and general issue of the whole world. It has attracted worldwide attention of the entire scientific majority because of its alarming rate of incidence and mortality. Since history of early examination of tuberculosis and its drug resistance, it has been proved that the diagnosis upgrades that enhances the survival and early case detection related to early treatment initiation. Careful bacteriological assurance and general prosperity approach to manage TB rely upon initial microscopic examination, solid & liquid culture methods, rapid molecular and standard DST assays.

For each assay of detection, there are new procedures and advancements adopted since their inception. Developing diagnostic techniques having access to quick accurate results, near-patient point-of-care diagnostics are now vital to curb and control TB and HIV-TB burden in resource-poor countries. This chapter has focused on the journey of those diagnostic techniques which remain the mainstay of TB diagnosis from early diagnostic work of smear microscopy to latest techniques involving whole genome sequencing. Starting late it is basic to comprehend that at present, there is no autonomous test for the quick acknowledgment of tuberculosis in all patients. While some new frameworks are direct, others have complex components and require sophisticated infrastructure and trained manpower. It is therefore imperative to choose from different diagnostic assays individually or to combine them inside a country’s national TB control program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFB:

Acid-fast bacilli

ATT:

Anti-tubercular therapy

BCG:

Bacillus Calmette-Guerin

CBNAAT:

Cartridge-based nucleic acid amplification test

CDC:

Center for disease control

CFP:

Culture filtrate protein

CFU:

Colony-forming unit

CRI:

Colorimetric redox indicator

DB:

Database

DNA:

Deoxyribonucleic acid

DR:

Direct repeat

DST:

Drug susceptibility testing

ESAT:

Early secreted antigenic target

FDA:

Food and Drug Administration

FIND:

Foundation for Innovative Newer Diagnostics

FM:

Fluorescent microscopy

HIV:

Human immunodeficiency virus

IFNg:

Interferon gamma

IGRA:

Interferon-gamma release assays

INH:

Isoniazid

IS6110:

Insertion sequence

IVD:

In vitro diagnostics

LAM:

Lipoarabinomannan

LAMP:

Loop-mediated amplification PCR

LED:

Light-emitting diode

LJ:

Lowenstein Jensen

LM:

Liquid medium

LPA:

Line probe assay

LTBI:

Latent tuberculosis infection

MDR:

Multidrug resistance

MIRU-VNTR:

Mycobacterium interspersed repeated units-variable number of tandem repeats

MODS:

Microscopic observation of drug susceptibility

MTB:

Mycobacterium tuberculosis

MTBC:

Mycobacterium tuberculosis complex

NGS:

Next-generation sequencing

NRA:

Nitrate reductase assay

NTM:

Nontuberculous Mycobacterium

OADC:

Oleic acid, albumin, dextrose, catalase

PANTA:

Polymyxin B, azlocillin, nalidixic acid, trimethoprim, amphotericin B

PPD:

Purified protein derivative

PPV:

Positive predictive value

RFLP:

Restriction fragment length polymorphism

RIF:

Rifampicin

RNTCP:

Revised National Tuberculosis Control Program

rRNA:

Ribosomal ribonucleic acid

SLID:

Second-line injectable drugs

SPR:

Surface plasmon resonance

TAT:

Turnaround time

TB:

Tuberculosis

TST:

Tuberculin skin test

TTD:

Time to detection

VOC’s:

Volatile organic compounds

WGS:

Whole genome sequencing

WHO:

World Health Organization

XDR:

Extensive drug resistance

ZN:

Ziehl Neelsen

References

  • Abe C, Hirano K, Tomiyama T (1999) Simple and rapid identification of the Mycobacterium tuberculosis complex by immunochromatographic assay using anti-MPB64 monoclonal antibodies. J Clin Microbiol 37(11):3693–3697

    Article  CAS  Google Scholar 

  • Brock TD (1999) The etiology of tuberculosis Koch R (1882).Trans. In: Brock TD (ed) Milestones in microbiology: 1546 to 1940. American Society for Microbiology, Washington

    Google Scholar 

  • Brown AC, Bryant JM, Einer-Jensen K, Holdstock J, Houniet DT, Chan JZ et al (2015a) Rapid whole-genome sequencing of mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol 53:2230–2237

    Article  CAS  Google Scholar 

  • Brown CA et al (2015b) Rapid whole-genome sequencing of Mycobacterium tuberculosis Isolates directly from clinical samples. J Clin Microbiol 53(7):2230–2237. https://doi.org/10.1128/JCM.00486-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA et al (2006) Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6(6):23

    Article  Google Scholar 

  • Bruins M, Rahim Z, Bos A, van de Sande WW, Endtz HP, van Belkum A (2013) Diagnosis of active tuberculosis by e-nose analysis of exhaled air. Tuberculosis (Edinb) 93(2):232–238

    Article  Google Scholar 

  • Centers for Disease Control (2000) [homepage on the internet]. Atlanta, Georgia, USA: CDC. Acid-fast direct smear microscopy training package. Available at: http://stacks.cdc.gov/view/cdc/31282. Cited 14 August 2018

  • Chaitali N et al (2014) Evaluation of the Indian TrueNAT micro RT-PCR device with GeneXpert for case detection of pulmonary tuberculosis. www.researchgate.net/publication/8233_Evaluation_of_the_Indian_TrueNAT_micro_RT-PCR_device_with_GeneXpert_for_case_detection_of_pulmonary_tuberculosis

  • Cheaper, Indigenous TB test enters final validation phase, The Hindu (2017). www.thehindu.com/sci-tech/health/cheaper-indigenous-tb-test-enters-final-validationphase/article19193085.ece

  • Cheng MM-C et al (2006) Current opinion in chemical biology. NanoSci Technol Inst 10:11–19

    CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  Google Scholar 

  • Cruz-Knight W, Blake-Gumbs L (2013) Tuberculosis: an overview. Prim Care 40(3):743e56. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0095454313000651?via%3Dihub

    Article  Google Scholar 

  • De Kantor IN, Kim SJ, Frieden T, Laszlo A, Luelmo F, Norval PY et al (1998) Laboratory services in tuberculosis control. WHO Global Tuberculosis Programme. WHO/TB/98.258. WHO, Geneva

    Google Scholar 

  • Diel R, Loddenkemper R, Nienhaus A (2012) Predictive value of interferon-g release assays and tuberculin skin testing for progression from latent TB infection to disease state: a meta-analysis. Chest 142(1):63e75. Available from: http://journal.publications.chestnet.org/article.aspx? articleid¼1206608

  • Drobniewski FA, Caws M, Gibson A, Young D et al (2003) Modern laboratory diagnosis of tuberculosis. Lancet Infect Dis 3(3):141–147

    Article  CAS  Google Scholar 

  • Drouillon V, Delogu G, Dettori G, Lagrange PH, Benecchi M, Houriez F et al (2009) Multicenter evaluation of a transcription-reverse transcription concerted assay for rapid detection of Mycobacterium tuberculosis complex in clinical specimens. J Clin Microbiol 47(11):3461–3465

    Article  CAS  Google Scholar 

  • Eiken Chemical Co. Ltd (2017) The principle of LAMP method [Homepage on the internet]. Available from http://loopamp.eiken.co.jp/e/lamp/. Cited 12 August 2018

  • Fu E et al (2008) Chapter 10. In: Schasfoort BM, Tudos AJ (eds) Handbook of surface Plasmon resonance. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Goldman L, Schafer AI (2011) Tuberculosis: disease overview. In: Goldman L, Schafer AI (eds) Goldman’s Cecil medicine: expert consult premium edition, 24th edn. Saunders Elsevier, St. Louis

    Google Scholar 

  • Hillemann D, Rüsch-Gerdes S, Richter E (2005) Application of the Capilia TB assay for culture confirmation of Mycobacterium tuberculosis complex isolates. Int J Tuberc Lung Dis 9(12):1409–1411

    CAS  PubMed  Google Scholar 

  • Hirano K, Aono A, Takahashi M, Abe C (2004) Mutations including IS6110 insertion in the gene encoding the MPB64 protein of Capilia TB-negative Mycobacterium tuberculosis isolates. J Clin Microbiol 42(1):390–392

    Article  CAS  Google Scholar 

  • International Standard for Tuberculosis Care, 3rd edition (2014). www.who.int/tb/publications/standards-tb-care-2014/

  • Iseman MD (2000) A clinical guide to tuberculosis. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Ismail NA, Omar SV, Lewis JJ, Dowdy DW, Dreyer AW, van der MH et al (2015) Performance of a novel algorithm using automated digital microscopy for diagnosing tuberculosis. Am J Respir Crit Care Med 191(12):1443–1449

    Article  Google Scholar 

  • Kremer K, van Soolingen D, Frothingham R, Haas WH, Hermans PW, Martín C (1999) Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol 37(8):2607–2618

    Article  CAS  Google Scholar 

  • Kremer K, Au BK, Yip PC, Skuce R, Supply P, Kam KM et al (2005) Use of variable-number tandem-repeat typing to differentiate Mycobacterium tuberculosis Beijing family isolates from Hong Kong and comparison with IS6110 restriction fragment length polymorphism typing and spoligotyping. J Clin Microbiol 43(1):314–320

    Article  CAS  Google Scholar 

  • Kwong JC, McCallum N, Sintchenko V, Howden BP (2015) Whole genome sequencing in clinical and public health microbiology. Pathology 47:199–210

    Article  CAS  Google Scholar 

  • Leão SC, Martin A, Mejia GI, Palomino JC, Robledo J, Telles MAS et al (2004) Practical handbook for the phenotypic and genotypic identification of mycobacteria. TropMed Central Antwerp, Antwerp. Introduction available at: http://www.esmycobacteriology.eu/PDF%20files/foreword.pdf

  • Lim SH, Martino R, Anikst V, Xu Z, Mix S, Benjamin R et al (2016) Rapid diagnosis of tuberculosis from analysis of urine volatile organic compounds. ACS Sens 1(7):852–856

    Article  CAS  Google Scholar 

  • Mase SR, Ramsay A, Ng V, Henry M, Hopewell PC, Cunningham J et al (2007) Yield of serial sputum specimen examinations in the diagnosis of pulmonary tuberculosis: a systematic review. Int J Tuberc Lung Dis 11(5):485–495

    CAS  PubMed  Google Scholar 

  • Migliori GB, Zellweger JP, Abubakar I, Ibraim E, Caminero JA, De Vries G et al (2012) European Union standards for tuberculosis care. Eur Respir J 39(4):807–819

    Article  CAS  Google Scholar 

  • Minion J, Pai M, Ramsay A, Menzies D, Greenaway C (2011) Comparison of LED and conventional fluorescence microscopy for detection of acid-fast bacilli in a low-incidence setting. PLoS One 6:e22495

    Article  CAS  Google Scholar 

  • MTBDRsl kit insert (2018) [Homepage on the internet]. https://www.immunodiagnostic.fi/wp-content/uploads/MTBDRsl-V2_kit-insert.pdf. Cited 19 August 2018

  • Mudur GS “One-hour test for TB” (2017) [Homepage on the internet]. https://www.telegraphindia.com/india/one-hour-test-for-tb-183556. Cited 21 August 2018

  • Nikolayevskyy V, Balabanova Y, Simak T, Malomanova N, Fedorin I, Drobniewski F (2009) Performance of the GenoType MTBDRplus assay in the diagnosis of tuberculosis and drug resistance in Samara, Russian Federation. BMC Clin Pathol 10(9):2

    Article  Google Scholar 

  • Pai M, Minion J, Sohn H, Zwerling A, Perkins MD (2009) Novel and improved technologies for tuberculosis diagnosis: progress and challenges. Clin Chest Med 30:701–716

    Article  Google Scholar 

  • Palomino JC (2012) Current developments and future perspectives 127. for TB diagnostics. Future Microbiol 7:59–71

    Article  Google Scholar 

  • Pankhurst LJ, Del Ojo EC, Votintseva AA, Walker TM, Cole K, Davies J et al (2016) Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med 4(1):49–58

    Article  CAS  Google Scholar 

  • Resch-Genger U et al (2008) Quantum dots versus dyes as fluorescent labels. Nature Methods 5:763–775

    Article  CAS  Google Scholar 

  • Rieder HL, Van Deun A, Kam KM, Kim SJ, Chonde TM, Trébucq A et al (2007) Priorities for tuberculosis bacteriology services in low-income countries, 2nd edn. International Union against Tuberculosis and Lung Disease, Paris

    Google Scholar 

  • Rodrigues C, Shenai S, Sadani M, Sukhadia N, Jani M, Ajbani K et al (2009) Evaluation of the Bactec MGIT 960 TB system for recovery and identification of Mycobacterium tuberculosis complex in a high through put tertiary care centre. Indian J Med Microbiol 27:217–221

    Article  CAS  Google Scholar 

  • Roh SS, Smith LE, Lee JS, Via LE, Barry CE III, Alland D et al (2015) Comparative evaluation of sloppy molecular beacon and dual-labeled probe melting temperature assays to identify mutations in Mycobacterium tuberculosis resulting in rifampin, fluoroquinolone and aminoglycoside resistance. PLoS One. 10(5):e0126257

    Article  Google Scholar 

  • Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB (2009) Tuberculosis drug resistance mutation database. PLoS Med 6(2):e1000002

    Article  Google Scholar 

  • Scarparo C, Piccoli P, Rigon A, Ruggiero G, Nista D, Piersimoni C (2001) Direct identification of mycobacteria fromMB/BacT alert 3D bottles: comparative evaluation of two commercial probe assays. J Clin Microbiol 39(9):3222–3227

    Article  CAS  Google Scholar 

  • Shen GH, Chen CH, Hung CH, Wu KM, Lin CF, Sun YW et al (2009) Combining the Capilia TB assay with smear morphology for the identification of Mycobacterium tuberculosis complex. Int J Tuberc Lung Dis 13:371–376

    PubMed  Google Scholar 

  • Shenai S, Armstrong DT, Valli E et al (2015) Analytical and clinical evaluation of the epistem genedrive assay for detection of mycobacterium tuberculosis. J Clin Microbiol 54(4):1051–1057. https://doi.org/10.1128/JCM.02847-15

    Article  CAS  Google Scholar 

  • Stop TB Partnership and World Health Organization (2008) New Laboratory Diagnostic Tools for TB Control. World Health Organization, Geneva. Available at: http://apps.who.int/tdr/publications/non-tdrpublications/diagnostic-tool-tb/pdf/diagnostic-tool-tb.pdf

  • Sun QF, Xu M, Wu JG, Chen BW, Du WX, Ding JG et al (2013) Efficacy and safety of recombinant Mycobacterium tuberculosis ESAT-6 protein for diagnosis of pulmonary tuberculosis: a phase II trial. Med Sci Monit 19:969–977

    Article  Google Scholar 

  • Thillai M, Pollock K, Pareek M, Lalvani A (2014) Interferon-gamma release assays for tuberculosis: current and future applications. Expert Rev Respir Med 8(1):67e78. Available from: http://informahealthcare.com/doi/abs/10.1586/17476348.2014.852471

    Article  Google Scholar 

  • Tortoli E, Mariottini A, Mazzarelli G (2003) Evaluation of INNO-LiPA MYCOBACTERIA v2: improved reverse hybridisation multiple DNA probe assay for mycobacterial identification. J Clin Microbiol 41(9):4418–4420

    Article  CAS  Google Scholar 

  • WHO Global Tuberculosis Report (2017). http://apps.who.int/iris/bitstream/handle/10665/259366/9789241565516eng.pdf;jsessionid=50ED827765AA9D9A35DB7D0127F3D574?sequence=1

  • WHO Meeting Report of a Technical Expert Consultation (2017) Non-inferiority analysis of Xpert MTB/RIF Ultra compared to Xpert MTB/RIF. World Health Organization, Geneva

    Google Scholar 

  • Witkamp B et al (2008) Self-detecting gate tunable nanotube paddle resonators. Appl Phys Lett 93:111909–1–3

    Article  Google Scholar 

  • World Health Organization (2008) Policy guidance on Drug Susceptibility Testing (DST) of second-line anti-tuberculosis drugs. WHO, Geneva. WHO/HTM/TB/2008.392. Available at: http://www.who.int/tb/dots/laboratory/policy/en/print.html

  • World Health Organization (2010a) A roadmap for ensuring quality tuberculosis diagnostics services within national laboratory strategic plans. The Global Laboratory Initiative, Advancing TB Diagnosis. Available at: http://www.tbevidence.org/documents/rescentre/books/GLI_Roadmap_2010.pdf

  • World Health Organization (2010b) Policy Statement on Non-commercial culture and DST Methods for rapid screening of patients at risk of multidrug-resistant Tuberculosis. WHO, Geneva. Available at: http://www.who.int/tb/dots/laboratory/policy/en/print.html

  • World Health Organization (2015) The use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV: WHO policy update, Geneva

    Google Scholar 

  • World Health Organization (2016) The use of loop mediated isothermal amplification (TB LAMP) for the diagnosis of TB: policy guidance. World Health Organization, Geneva. Available from http://www.who.int/tb/publications/lamp-diagnosis-molecular/en/

Download references

Acknowledgment

Foundation for Innovative Newer Diagnostics (FIND) India deserves a special acknowledgment for providing permission to cite a table (annexure) summarizing the TB diagnostic pipeline showing progress at different development stages.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vashistha, H., Chopra, K.K. (2019). TB Diagnostics: Journey from Smear Microscopy to Whole Genome Sequencing. In: Hasnain, S., Ehtesham, N., Grover, S. (eds) Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions. Springer, Singapore. https://doi.org/10.1007/978-981-32-9413-4_23

Download citation

Publish with us

Policies and ethics