Skip to main content

Cell to Communication Between Mammalian Host and Microbial Quorum Sensing Orchestrates the Complex Relationships

  • Chapter
  • First Online:
Book cover Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry

Abstract

Bacteria have to adapt to dynamic environmental condition in order to survive. Quorum sensing is a communication between bacterial cells for modification in behavior by sensing change in cell density. This communication includes the production and release of signaling molecules termed as autoinducer. This is to check the cell number and to modify gene expression accordingly to perform certain cooperative actions. Quorum-sensing phenomenon is executed by both gram-positive and gram-negative bacteria, but it differs in their mechanism. It is not restricted to bacteria only. As prokaryotes and eukaryotes coexist for their effective survival, there is a crosstalk between bacterial signaling molecule and host-derived hormones. The current chapter highlights inter-kingdom relationship between bacteria and host, especially focus is on mammals and how they crosstalk with each other. It emphasizes on how autoinducers produced by bacteria affect mammalian host cell behavior and its signaling mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammons MC, Copié V (2013) Lactoferrin: a bioinspired, anti-biofilm therapeutic. Biofouling 29:443–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS Suppl 136:1–51

    Article  CAS  Google Scholar 

  • Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23:382–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903

    Article  PubMed  Google Scholar 

  • Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK (2010) Host–bacterial symbiosis in health and disease. Adv Immunol 107:243–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP (2004) Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci U S A 101:3587–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548

    Article  CAS  PubMed  Google Scholar 

  • Curtis MM, Sperandio V (2011) A complex relationship: the interaction among symbiotic microbes, invading pathogens, and their mammalian host. Mucosal Immunol 4:133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis KM, Isberg RR (2018) One for all, but not all for one: social behavior during bacterial diseases. Trends Microbiol 27:64–74

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deep A, Chaudhary U, Gupta V (2011) Quorum sensing and bacterial pathogenicity: from molecules to disease. J Lab Phys 3:4–11

    CAS  Google Scholar 

  • Defoirdt T, Brackman G, Coenye T (2013) Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol 21:619–624

    Article  CAS  PubMed  Google Scholar 

  • Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis TN, Kuehn MJ (2010) Virulence and Immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 74:81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federle, Bassler (2003a) Chemical communication among bacteria. Proc Natl Acad Sci 100:14549–14554

    Article  CAS  Google Scholar 

  • Federle MJ, Bassler BL (2003b) Interspecies communication in bacteria. J Clin Investig 112:1291–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiya M, Musch MW, Nakagawa Y, Hu S, Alverdy J, Kohgo Y, Schneewind O, Jabri B, Chang EB (2007) The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbe 1:299–308

    Article  CAS  PubMed  Google Scholar 

  • Fuqua C, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751

    Article  CAS  PubMed  Google Scholar 

  • Galloway WR, Hodgkinson JT, Bowden S, Welch M, Spring DR (2012) Applications of small molecule activators and inhibitors of quorum sensing in gram-negative bacteria. Trends Microbiol 20:449–458

    Article  CAS  PubMed  Google Scholar 

  • Gellatly SL, Hancock RE (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67(3):159–173

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez DJ, Haste NM, Hollands A, Fleming TC, Hamby M, Pogliano K, Nizet V, Dorrestein PC (2011) Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology 157:2485–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haiko J, Westerlund-Wikström B (2013) The role of the bacterial flagellum in adhesion and virulence. Biology (Basel) 2(4):1242–1267

    Google Scholar 

  • Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Q, Chen PJ, Qin G, Deng X, Hao Z, Wawrzak Z, Yeo W-S, Quang JW, Cho H, Luo G-Z, Weng X, You Q, Luan C-H, Yang X, Bae T, Yu K, Jiang H, He C (2016) Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus. Nat Commun 7:11000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh C-L, Sam C-K, Yin W-F, Tan LY, Krishnan T, Chong YM, Chan K-G (2013) Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors (Basel, Switzerland) 13:6217–6228

    Article  CAS  Google Scholar 

  • Lau GW, Hassett DJ, Ran H, Kong F (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10:599–606

    Article  CAS  PubMed  Google Scholar 

  • McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Papenfort K, Bassler B (2016) Quorum-sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Jagasia R, Kaufmann GF, Mathison JC, Ruiz DI, Moss JA, Meijler MM, Ulevitch RJ, Janda KD (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14:1119–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesci EC et al (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyraud R, Cottret L, Marmiesse L, Gouzy J, Genin S (2016) A resource allocation trade-off between virulence and proliferation drives metabolic versatility in the plant pathogen Ralstonia solanacearum. PLoS Pathog 12:e1005939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saurav K, Costantino V, Venturi V, Steindler L (2017) Quorum sensing inhibitors from the sea discovered using bacterial N-acyl-homoserine lactone-based biosensors. Mar Drugs 15:53

    Article  PubMed Central  CAS  Google Scholar 

  • Schell U, Simon S, Hilbi H (2016) Inflammasome recognition and regulation of the Legionella flagellum. Curr Top Microbiol Immunol 397:161–181

    CAS  PubMed  Google Scholar 

  • Sheela GM, Prathyusha AMVN, Neelapu NRR, Bramhachari PV (2018) Intra and inter-species communication in microbes: living with complex and sociable neighbors. In: Implication of quorum sensing system in biofilm formation and virulence. Springer, Singapore, pp 7–16

    Chapter  Google Scholar 

  • Skindersoe ME, Zeuthen LH, Brix S, Fink LN, Lazenby J, Whittall C, Williams P, Diggle SP, Froekiaer H, Cooley M, Givskov M (2009) Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. FEMS Immunol Med Microbiol 55:335–345

    Article  CAS  PubMed  Google Scholar 

  • Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A 100:8951–8956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian P, Choy KL, Gobal SV, Mansor M, Ng KH (2013) Impact of education on ventilator-associated pneumonia in the intensive care unit. Singap Med J 54:281–284

    Article  Google Scholar 

  • Tay SB, Yew WS (2013) Development of quorum-based anti-virulence therapeutics targeting gram-negative bacterial pathogens. Int J Mol Sci 14:16570–16599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Telford G et al (1998) The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect Immun 66:36–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turkina MV, Vikström E (2019) Bacteria-host crosstalk: sensing of the quorum in the context of Pseudomonas aeruginosa infections. J Innate Immun 11(3):263–279

    Article  CAS  PubMed  Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Therap 40:277–283

    Google Scholar 

  • Walsh CJ, Guinane CM, O’Toole PW, Cotter PD (2014) Beneficial modulation of the gut microbiota. FEBS Lett 588:4120–4130

    Article  CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prudhvi Lal Bhukya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhukya, P.L., Sheela, G.M., Prathyusha, A.M.V.N., Bramhachari, P.V. (2019). Cell to Communication Between Mammalian Host and Microbial Quorum Sensing Orchestrates the Complex Relationships. In: Bramhachari, P. (eds) Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry . Springer, Singapore. https://doi.org/10.1007/978-981-32-9409-7_5

Download citation

Publish with us

Policies and ethics