Skip to main content

Biofilm Formation on Ophthalmic Device-Related Infections: Insights on Clinical Implications

  • Chapter
  • First Online:
  • 788 Accesses

Abstract

Biofilms are structured communities of microorganisms which are encased within a self-produced matrix attached to surface of abiotic or biotic. There is growing evidence that bacterial biofilms play a major lead in a range of ocular infections. The presence of biofilms has been established on most indwelling ophthalmic devices such as intraocular lenses, scleral buckles, contact lenses and suture materials. Lack of poor lens hygiene leads to infections of soft lenses that are at high risk than other types of lenses. Pseudomonas spp. is gram-negative bacteria predominant on contact lenses. Serratia spp. and Staphylococcus spp. are the next dominant microorganisms in the eye. The biofilm of these organisms led to activation of various signalling cascades which cause permanent vision loss in humans. The strategy of preventing the microbial attachment and biofilm formation by utilizing single-cell repellent surfaces is the ideal choice. Natural and man-made anti-biofilm compounds have previously been discovered to address this problem. There is a large requirement for improvement of anti-biofilm formulations to control the post-surgery eye medical devices. The organoselenium polypropylene is the one which demonstrates the capacity to decrease biofilm formation. The utilization of organoselenium copolymer assumes an indispensable job in securing against contact focal point. Nisin polypropylene material showed to stop the biofilm formation of S. epidermidis. The review emphasizes on biofilm formation on ophthalmic devices and advanced developments in the anti-biofilm materials for better vision.

All authors contributed equally

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackart WB, Camp RL et al (1975) Antimicrobial polymers. J Biomed Mater Res 9(1):55–68

    Article  CAS  PubMed  Google Scholar 

  • Archibald LK, Gaynes RP (1997) Hospital-acquired infections in the United States: the importance of inter-hospital comparisons. Infect Dis Clin North Am 11(2):245–255

    Article  CAS  PubMed  Google Scholar 

  • Benz MS, Scott IU et al (2004) Endophthalmitis isolates and antibiotic sensitivities: a 6-year review of culture-proven cases. Am J Ophthalmol 137(1):38–42

    Article  PubMed  Google Scholar 

  • Berger D, Rakhamimova A et al (2018) Oral biofilms: development, control, and analysis. High Throughput 7(3)

    Google Scholar 

  • Bispo PJ, Haas W et al (2015) Biofilms in infections of the eye. Pathogens 4(1):111–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourkiza R, Lee V (2012) A review of the complications of lacrimal occlusion with punctal and canalicular plugs. Orbit 31(2):86–93

    Article  PubMed  Google Scholar 

  • Bridgett MJ, Davies MC et al (1992) Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants. Biomaterials13(7):411–416

    Google Scholar 

  • Bruinsma GM, van der Mei HC et al (2001) Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials 22(24): 3217–3224

    Article  CAS  PubMed  Google Scholar 

  • Cheng KH, Leung SL et al (1999) Incidence of contact-lens-associated microbial keratitis and its related morbidity. Lancet 354(9174):181–185

    Article  CAS  PubMed  Google Scholar 

  • Cho P, Shi GS et al (2015) Inhibitory effects of 2,2′-Dipyridyl and 1,2,3,4,6-Penta-O-Galloyl-b-D-Glucopyranose on biofilm formation in contact lens cases. Invest Ophthalmol Vis Sci 56(12):7053–7057

    Article  CAS  PubMed  Google Scholar 

  • Darouiche RO (2001) Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 33(9):1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429

    Article  CAS  PubMed  Google Scholar 

  • Dart JK, Stapleton F et al (1991) Contact lenses and other risk factors in microbial keratitis. Lancet 338(8768):650–653

    Article  CAS  PubMed  Google Scholar 

  • Dart JK, Radford CF et al (2008) Risk factors for microbial keratitis with contemporary contact lenses: a case-control study. Ophthalmology 115(10):1647–1654, 1654 e1–3

    Article  Google Scholar 

  • Desai NP, Hubbell JA (1991) Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials 12(2):144–153

    Article  CAS  PubMed  Google Scholar 

  • Desai NP, Hossainy SF et al (1992) Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials 13(7):417–420

    Article  CAS  PubMed  Google Scholar 

  • Desrousseaux C, Sautou V et al (2013) Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect 85(2):87–93

    Article  CAS  PubMed  Google Scholar 

  • Dickey JB, Thompson KD et al (1991) Anterior chamber aspirate cultures after uncomplicated cataract surgery. Am J Ophthalmol 112(3):278–282

    Article  CAS  PubMed  Google Scholar 

  • Dong YH, Zhang XF et al (2008) A novel two-component system BqsS-BqsR modulates quorum sensing-dependent biofilm decay in Pseudomonas aeruginosa. Commun Integr Biol 1(1):88–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan RM (2008) Biofilms on central venous catheters: is eradication possible? Curr Top Microbiol Immunol 322:133–161

    CAS  PubMed  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta D, Cole N et al (2012) Factors influencing bacterial adhesion to contact lenses. Mol Vis 18:14–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenbeis C, Neppert B et al (2011) Anatomic and subjective success of structured surgical treatment strategy in the management of chronic epiphora – a postoperative analysis of contentment. Klin Monatsbl Augenheilkd 227(11):879–886

    Article  Google Scholar 

  • Fisch A, Salvanet A et al (1991) Epidemiology of infective endophthalmitis in France. The French collaborative study group on endophthalmitis. Lancet 338(8779):1373–1376

    CAS  PubMed  Google Scholar 

  • Fleiszig SM, Evans DJ (2010) Pathogenesis of contact lens-associated microbial keratitis. Optom Vis Sci 87(4):225–232

    PubMed  PubMed Central  Google Scholar 

  • Garty S, Shirakawa R et al (2011) Sustained antibiotic release from an intraocular lens-hydrogel assembly for cataract surgery. Invest Ophthalmol Vis Sci 52(9):6109–6116

    Article  CAS  PubMed  Google Scholar 

  • Gristina AG, Costerton JW (1984) Bacteria-laden biofilms: a hazard to orthopaedic prostheses. Infect Surg 67A:264–273

    Google Scholar 

  • Gristina AG, Costerton JW (1985) Bacterial adherence to biomaterials and tissue. J Bone Joint Surg Am 67(264–73):264

    Article  CAS  PubMed  Google Scholar 

  • Hahn HP (1997) The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa--a review. Gene 192(1):99–108

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW et al (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Health NIO (2007, November 12). Targeted research on oral microbial biofilms (DE98-006). http://grants.nih.gov/grants/guide/rfa-files/RFA-DE-98-006.html

  • Holland SP, Pulido JS et al (1991) Biofilm and scleral buckle-associated infections. A mechanism for persistence. Ophthalmology 98(6):933–938

    Article  CAS  PubMed  Google Scholar 

  • HPA (2011) English national point prevalence survey on health care associated infections and antimicrobial use. Preliminary Data. Health Protection Agency, London

    Google Scholar 

  • Ibanez A, Trinidad A et al (2011) Biofilm colonisation in nasolacrimal stents. B-ENT 7(1):7–10

    CAS  PubMed  Google Scholar 

  • Juarez-Verdayes MA, Reyes-Lopez MA et al (2006) Isolation, vancomycin resistance and biofilm production of Staphylococcus epidermidis from patients with conjunctivitis, corneal ulcers, and endophthalmitis. Rev Latinoam Microbiol 48(3–4):238–246

    PubMed  Google Scholar 

  • Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89(3):205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol 73(2):310–347

    Article  CAS  Google Scholar 

  • Kazemzadeh-Narbat M, Lai BF et al (2013) Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34(24):5969–5977

    Article  CAS  PubMed  Google Scholar 

  • Klotz SA, Butrus SI et al (1989) The contribution of bacterial surface hydrophobicity to the process of adherence of Pseudomonas aeruginosa to hydrophilic contact lenses. Curr Eye Res 8(2):195–202

    Article  CAS  PubMed  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104(27):11197–11202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrie TJ, Nelligan J, Costerton JW (1982) A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 66:1339–1343

    Article  CAS  PubMed  Google Scholar 

  • May RM, Hoffman MG et al (2014) Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: potential for enhancing endotracheal tube designs. Clin Transl Med 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Nakayama J, Yokohata R et al (2013) Development of a peptide antagonist against fsr quorum sensing of Enterococcus faecalis. ACS Chem Biol 8(4):804–811

    Article  CAS  PubMed  Google Scholar 

  • Parsa K, Schaudinn C et al (2010) Demonstration of bacterial biofilms in culture-negative silicone stent and jones tube. Ophthal Plast Reconstr Surg 26(6):426–430

    Article  PubMed  Google Scholar 

  • Pathengay A, Karosekar S et al (2004) Microbiologic spectrum and susceptibility of isolates in scleral buckle infection in India. Am J Ophthalmol 138(4):663–664

    Article  PubMed  Google Scholar 

  • Pepose JS, Wilhelmus KR (1992) Divergent approaches to the management of corneal ulcers. Am J Ophthalmol 114(5):630–632

    Article  CAS  PubMed  Google Scholar 

  • Puliafito CA, Baker AS et al (1982) Infectious endophthalmitis. Review of 36 cases. Ophthalmology 89(8):921–929

    Article  CAS  PubMed  Google Scholar 

  • Rose WE, Otto DP et al (2015) Prevention of biofilm formation by methacrylate-based copolymer films loaded with rifampin, clarithromycin, doxycycline alone or in combination. Pharm Res 32(1):61–73

    Article  CAS  PubMed  Google Scholar 

  • Salwiczek M, Qu Y et al (2014) Emerging rules for effective antimicrobial coatings. Trends Biotechnol 32(2):82–90

    Article  CAS  PubMed  Google Scholar 

  • Schimel AM, Miller D et al (2013) Endophthalmitis isolates and antibiotic susceptibilities: a 10-year review of culture-proven cases. Am J Ophthalmol 156(1):50–52. e1

    Article  CAS  PubMed  Google Scholar 

  • Smiddy WE, Miller D et al (1993) Scleral buckle removal following retinal reattachment surgery: clinical and microbiologic aspects. Ophthalmic Surg 24(7):440–445

    CAS  PubMed  Google Scholar 

  • Speaker MG, Milch FA et al (1991) Role of external bacterial flora in the pathogenesis of acute postoperative endophthalmitis. Ophthalmology 98(5):639–649; discussion 650

    Article  CAS  PubMed  Google Scholar 

  • Springer EL, Roth IL (1973) The ultrastructure of the capsules of Diplococcus pneumoniae and Klebsiella pneumoniae stained with ruthenium red. J Gen Microbiol 74(1):21–31

    Article  CAS  PubMed  Google Scholar 

  • Sugita J, Yokoi N et al (2001) The detection of bacteria and bacterial biofilms in punctal plug holes. Cornea 20(4):362–365

    Article  CAS  PubMed  Google Scholar 

  • Sunderraj, P. (1992). "Anterior chamber aspirate cultures after uncomplicated cataract surgery." Am J Ophthalmol 113(2): 221–2

    Article  CAS  PubMed  Google Scholar 

  • Tabbara KF, El-Sheikh HF et al (2000) Extended wear contact lens related bacterial keratitis. Br J Ophthalmol 84(3):327–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiller JC, Liao CJ et al (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A 98(11):5981–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Kleef E, Robotham JV et al (2013) Modelling the transmission of healthcare associated infections: a systematic review. BMC Infect Dis 13:294

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb LX, Meyers RT, Cordell AR, Hobgood AR, Costerton JW, Gristina AG (1986) Inhibition of bacterial adhesion by antibacterial surface pretreatment of vascular prostheses. J Vasc Surg 4:16–21

    Article  CAS  PubMed  Google Scholar 

  • Willcox MD, Carnt N et al (2010) Contact lens case contamination during daily wear of silicone hydrogels. Optom Vis Sci 87(7):456–464

    PubMed  Google Scholar 

  • Yokoi N, Okada K et al (2000) Acute conjunctivitis associated with biofilm formation on a punctal plug. Jpn J Ophthalmol 44(5):559–560

    Article  CAS  PubMed  Google Scholar 

  • Zegans ME, Shanks RM et al (2005) Bacterial biofilms and ocular infections. Ocul Surf 3(2):73–80

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr Kishore and Dr Bramhachari are grateful to thier academic institutions for the support extended.

Conflict of Interest

The authors declares that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishore Kumar Godisela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Godisela, K.K., Bramhachari, P.V. (2019). Biofilm Formation on Ophthalmic Device-Related Infections: Insights on Clinical Implications. In: Bramhachari, P. (eds) Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry . Springer, Singapore. https://doi.org/10.1007/978-981-32-9409-7_11

Download citation

Publish with us

Policies and ethics