Skip to main content

Current-Induced Dynamics of Skyrmion Strings Investigated by Nonreciprocal Hall Effect

  • Chapter
  • First Online:
Magneto-transport Properties of Skyrmions and Chiral Spin Structures in MnSi

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Dynamics of string-like objects is an important issue in a broad range of physical systems including vortex lines in superconductors, viscoelastic polymers, and superstrings in elementary particles physics. The string forms of magnetic skyrmions are present as the topological spin objects, and their current-induced dynamics attracts recent intensive interest. In this chapter, we show that the current-induced deformation dynamics of skyrmion strings results in nonreciprocal transport response associated with the real-space Berry phase of skyrmions. Prominent nonreciprocal nonlinear Hall signals emerge above the threshold current only in the skyrmion phase. The nonreciprocal Hall response originates from the emergent electromagnetic field, which results from deformation of skyrmion strings in an asymmetric manner due to Dzyaloshinskii-Moriya interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mermin ND (1979) Rev Mod Phys 51:591

    Article  ADS  Google Scholar 

  2. Blatter G, Feigel’man MY, Geshkenbein YB, Larkin AI, Vinokur VM (1994) Rev Mod Phys 66:1125

    Article  ADS  Google Scholar 

  3. Luo M-B, Xiao H (2007) Phys Rev Lett 98:267002

    Article  ADS  Google Scholar 

  4. Mühlbauer S, Binz B, Jonietz F, Pleiderer C, Rosch A, Neubauer A, Georgii R, Böni P (2009) Science 323:915

    Article  ADS  Google Scholar 

  5. Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y (2010) Nature 465:901

    Article  ADS  Google Scholar 

  6. Park HS, Yu XZ, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y (2014) Nat Nanotechnol 9:337

    Article  ADS  Google Scholar 

  7. Nagaosa N, Tokura Y (2013) Nat Nanotechnol 8:899

    Article  ADS  Google Scholar 

  8. Kanazawa N, Seki S, Tokura Y (2017) Adv Mater 29:1603227

    Article  Google Scholar 

  9. Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz PG, Böni P (2009) Phys Rev Lett 102:186602

    Article  ADS  Google Scholar 

  10. Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A (2012) Nat Phys 8:301

    Article  Google Scholar 

  11. Fert A, Cros V, Sampaio J (2013) Nat Nanotechnol 8:152

    Google Scholar 

  12. Iwasaki J, Mochizuki M, Nagaosa N (2013) Nat Commun 4:1463

    Google Scholar 

  13. Lin S-Z, Saxena A (2016) Phys Rev B 93:060401(R)

    Article  ADS  Google Scholar 

  14. Garello K, Miron IM, Avci CO, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G, Gambardella P (2013) Nat Nanotechnol 8:587

    Article  ADS  Google Scholar 

  15. Fleming RM, Grimes CC (1979) Phys Rev Lett 42:1423

    Article  ADS  Google Scholar 

  16. Grüner G (1988) Rev Mod Phys 60:1129

    Article  ADS  Google Scholar 

  17. Yaron U, Gammel PL, Huse DA, Klemiman RN, Oglesby CS, Bucher E, Batlogg B, Bishop DJ, Mortensen K, Clausen KN (1995) Nature 376:753

    Article  ADS  Google Scholar 

  18. Olson CJ, Reichhardt C, Nori F (1998) Phys Rev Lett 81:3757

    Article  ADS  Google Scholar 

  19. Reichhardt C, Ray D, Olson Reichhardt CJ (2015) Phys Rev Lett 114:217202

    Google Scholar 

  20. Jonietz F, Mühlbauer S, Pfleiderer C, Nuebauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine RA, Evershor K, Garst M, Rosch A (2010) Science 330:1648

    Article  ADS  Google Scholar 

  21. Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi KS, Otani Y, Kawasaki M, Tokura Y (2017) Phys Rev Lett 119:137204

    Article  ADS  Google Scholar 

  22. Kleemann W, Rhensius J, Petracic O, Ferre J, Jamet JP, Bernas H (2007) Phys Rev Lett 99:097203

    Article  ADS  Google Scholar 

  23. Tatara G, Fukuyama H (2014) J Phys Soc Jpn 83:104711

    Article  ADS  Google Scholar 

  24. Bak P, Jensen H (1980) J Phys C 13:L881

    Article  ADS  Google Scholar 

  25. Yokouchi T, Hoshino S, Kanazawa N, Kikkawa A, Morikawa D, Shibata K, Arima T, Taguchi Y, Kagawa F, Nagaosa N, Tokura Y (2018) Science Adv 4:eaat1115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Yokouchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yokouchi, T. (2019). Current-Induced Dynamics of Skyrmion Strings Investigated by Nonreciprocal Hall Effect. In: Magneto-transport Properties of Skyrmions and Chiral Spin Structures in MnSi. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-32-9385-4_5

Download citation

Publish with us

Policies and ethics