Skip to main content

Uptake, Accumulation, and Toxicity of Metal Nanoparticles in Autotrophs

  • Chapter
  • First Online:
Nanotechnology for Agriculture
  • 833 Accesses

Abstract

An increasing consumption of engineered nanoparticles has raised serious concerns to safeguard the microbial biodiversity and ecology. An unregulated and unrestricted consumption of engineered nanoparticle-based products and unsympathetic disposal to the biosphere has brutally marred the ecological balance. While investigating the vicious outcomes of engineered nanoparticles, their uptake and accumulation in autotrophs, which form the first trophic level in most food chains, needs an extensive exploration. The mechanism of nanoparticle uptake in plants may provide prototypes for instigating operational initiatives for extenuating environmental damage caused by nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeleye AS, Stevenson LM, Su Y, Nisbet RM, Zhang Y, Keller AA (2016) Influence of phytoplankton on fate and effects of modified zerovalent iron nanoparticles. Environ Sci Technol 50:5597–5605

    Article  CAS  PubMed  Google Scholar 

  • Bao-Shan L, Shao-Qi D, Chun-Hui L, Li-Jun F, Shu-Chun Q, Min Y (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J For Res 15:138–140

    Article  Google Scholar 

  • Bundschuh M, Filser J, Luderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 30:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7:e34783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheloni G, Marti E, Slaveykova VI (2016) Interactive effects of copper oxide nanoparticles and light to green algae Chlamydomonas reinhardtii. Aquat Toxicol 170:120–128

    Article  CAS  PubMed  Google Scholar 

  • Chibuikel GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12. https://doi.org/10.1155/2014/752708

    Article  CAS  Google Scholar 

  • Clarkson DT, Luttge U (1989) Mineral nutrition: divalent cations, transport and compartmentation. Prog Bot 51:93–112

    Google Scholar 

  • Dash A, Singh AP, Chaudhary BR, Singh SK, Dash D (2012) Effect of silver nanoparticles on growth of eukaryotic green algae. Nano-Micro Lett 4:158–165

    Article  CAS  Google Scholar 

  • Dewez D, Oukarroum A (2012) Silver nanoparticles toxicity effect on photosystem II photochemistry of the green alga Chlamydomonas reinhardtii treated in light and dark conditions. Toxicol Environ Chem 94:1536–1546

    Article  CAS  Google Scholar 

  • Ding X, Huang X, Jin J, Ming H, Wang L, Ming J (2018) Advanced and safer lithium-ion battery based on sustainable electrodes. J Power Sources 379:53–59

    Article  CAS  Google Scholar 

  • Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792

    Article  CAS  PubMed  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Gogos A, Moll J, Klingenfuss F, van der Heijden M, Irin F, Green MJ, Zenobi R, Bucheli TD (2016) Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. J Nanobiotechnol 14:40

    Article  CAS  Google Scholar 

  • Hawthorne J, Musante C, Sinha SK, White JC (2012) Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo. Int J Phytoremediation 14:429–444

    Article  CAS  PubMed  Google Scholar 

  • He Z, Shentu J, Yang X, Baligar VC, Zhang T, Stoffella PJ (2015) Heavy metal contamination of soils: sources, indicators, and assessment. J Environ Indic 9:17–18

    Google Scholar 

  • Heiligtag FJ, Niederberger M (2013) The fascinating world of nanoparticle research. Mater Today 16:262–271

    Article  CAS  Google Scholar 

  • Holbrook RD, Murphy KE, Morrow JB, Cole KD (2008) Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nanotechnol 3:352–355

    Article  CAS  PubMed  Google Scholar 

  • Homaee MB, Ehsanpour AA (2016) Silver nanoparticles and silver ions: oxidative stress responses and toxicity in potato (Solanum tuberosum L) grown in vitro. Hortic Environ Biotechnol 57:544–553

    Article  CAS  Google Scholar 

  • Hong J, Rico C, Zhao L, Adeleye AS, Keller AA et al (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 23:177–185

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and Daphnids. Environ Sci Pollut Res Int 13:225–232

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil and water. Environ Sci Pollut Res Int 23:13754–13788

    Article  CAS  PubMed  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ 29:1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran G, Suriyaprabha R, Manivasakan P et al (2013) Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol 7:70–77

    Article  CAS  PubMed  Google Scholar 

  • Ko K-S, Koh D-C, Kong IC (2018) Toxicity evaluation of individual and mixtures of nanoparticles based on algal chlorophyll content and cell count. Materials 11:121

    Article  PubMed Central  CAS  Google Scholar 

  • Le Van N, Rui Y (2016) Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton. J Plant Interact 11:108–116

    Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D et al (2009) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  Google Scholar 

  • Lei C, Zhang L, Yang K, Zhu L, Lin D (2016) Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut 218:505–512

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhou S, Fan W (2016) Effect of Nano-Al2O3 on the toxicity and oxidative stress of copper towards Scenedesmus obliquus. Int J Environ Res Public Health 13:575

    Article  PubMed Central  CAS  Google Scholar 

  • Liu N, Wen F, Zhao Y, Wang Y, Nordlander P, Halas NJ, Alu A (2013) Individual nanoantennas loaded with three-dimensional optical Nanocircuits. Nano Lett 13:142–147

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841–850

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Rimmer DL (1995) Zinc-copper interaction affecting plant growth on a metal-contaminated soil. Environ Pollut 88(1):79–83

    Article  PubMed  Google Scholar 

  • Madhumitha G, Elango G, Roopan SM (2016) Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl Microbiol Biotechnol 100:571–581

    Article  CAS  PubMed  Google Scholar 

  • Marques Neto LM, Kipnis A, Junqueira-Kipnis AP (2017) Role of metallic nanoparticles in vaccinology: implications for infectious disease vaccine development. Front Immunol 8:239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654

    Article  CAS  Google Scholar 

  • McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, Dockery P, Prendergast M, Rowan N, Morris D (2017) Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ 575:231–246. https://doi.org/10.1016/j.scitotenv.2016.10.041

    Article  CAS  PubMed  Google Scholar 

  • Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in green algae Chlamydomonas reinhardtii. Aquat Toxicol 142–143:431–440

    Article  PubMed  CAS  Google Scholar 

  • Miao AJ, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas Danica. PLoS One 5:e15196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Mosa KA, El-Naggar M, Ramamoorthy K, Alawadhi H et al (2018) Copper nanoparticles induced genotoxicity, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Front Plant Sci 9:872

    Article  PubMed  PubMed Central  Google Scholar 

  • Mudila H, Prasher P, Kumar M, Kapoor H, Kumar A, Zaidi MGH, Verma A (2018) An insight into cadmium poisoning and its removal from aqueous sources by graphene adsorbents. Int J Environ Health Res 29(1):1–21. https://doi.org/10.1080/09603123.2018.1506568

    Article  CAS  PubMed  Google Scholar 

  • Muhammad S, Muhammad I, Chanbasha B, Madiha T, Muhammad D, Nadeem B, Farrukh S (2015) Impact of nanoparticles on humans and environment: review of toxicity factors, exposures, control strategies and future prospects. Environ Sci Pollut Res 22:4122–4143

    Article  Google Scholar 

  • Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27:510–551

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq YK (2011) Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. J Environ Sci Health A 46:1732–1735

    Article  CAS  Google Scholar 

  • Nair PMG, Chung M (2014) Copper oxide nanoparticle toxicity in mungbean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  PubMed  Google Scholar 

  • Nhan Le V, Rui Y, Gui X, Li X, Liu X, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50

    Article  CAS  Google Scholar 

  • Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  • Oukarroum A, Samadani M, Dewez D (2014) Influence of pH on the toxicity of silver nanoparticles in the Green algae Chlamydomonas acidophila. Water Air Soil Pollut 225:2038

    Article  CAS  Google Scholar 

  • Padrova K, Lukavsky J, Nedbalova L, Cejkova A, Cajthamal T, Sigler K, Vitova M, Rezanka T (2015) Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J Appl Phycol 27:1443–1451

    Article  CAS  Google Scholar 

  • Pakrashi S, Dalai S, Prathna TC, Trivedi S, Myneni R, Raichur AM, Chandrasekaran N, Mukherjee A (2013) Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. Aquat Toxicol 132–133:34–45

    Article  PubMed  CAS  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Functional Applications, vol 2. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R (2012) Polymer coating of copper oxide nanoparticles uptake and toxicity in the green algae Chlamydomonas reinhardtii. Chemosphere 87:1388–1394

    Article  CAS  PubMed  Google Scholar 

  • Pileni MP, Hammaouda A, Lisiecki I, Motte L, Moumen N, Tanori J (1996) Control of the size and shape of nanoparticles. In: Pelizzetti E (ed) Fine particles science and technology. NATO ASI series (Series 3: High Technology), vol 12. Springer, Dordrecht

    Google Scholar 

  • Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasher P, Singh M, Mudila H (2018) Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges. 3 Biotechnol 8:411

    Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956

    Article  CAS  Google Scholar 

  • Rashid M, Shahzad T, Shahid M, Imran M et al (2017) Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil. Sci Rep 7:41965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohani FG, Aghamirzadeh S (2014) Determination of sources and distribution of heavy metal pollutants in the soil in the area of Sarcheshmeh copper mine. Trends Appl Sci Res 9(5):262–268. https://doi.org/10.3923/tasr.2014.262.268

    Article  CAS  Google Scholar 

  • Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res 13:3287–3299

    Article  CAS  Google Scholar 

  • Salgare SA, Acharekar C (1992) Effect of industrial pollution on growth and content of certain weeds. J Nat Conserv 4:1–6

    Google Scholar 

  • Seisyan RP (2011) Nanolithography in microelectronics: a review. Tech Phys 56:1061

    Article  CAS  Google Scholar 

  • Sheth P, Sandhu H, Singhal D, Malick W, Shah N, Kislalioglu MS (2012) Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production. Curr Drug Deliv 9:269–284

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Krom MD, Bonneville S, Baker AR, Jickells TD, Benning LG (2009) Environ Sci Technol 43:6592–6596. https://doi.org/10.1021/es901294g

    Article  CAS  PubMed  Google Scholar 

  • Shirazi MA, Shariati F, Keshavarz AK, Ramezanpour Z (2015) Toxic effect of aluminium oxide nanoparticles on green micro-algae Dunaliella salina. Int J Environ Res 9:585–594

    Google Scholar 

  • Sidhu GPS (2016) Heavy metal toxicity in soils: sources, remediation technologies and challenges. Adv Plants Agric Res 5(1):445–446. https://doi.org/10.15406/apar.2016.05.00166

    Article  Google Scholar 

  • Singh M, Prasher P, Suganuma K (2017a) Fabrication of dense CIGS film by mixing two types of nanoparticles for solar cell application. Nano-Struct Nano-Objects 11:129–134

    Article  CAS  Google Scholar 

  • Singh N, Gupta VK, Kumar A, Sharma B (2017b) Synergistic effects of heavy metals and pesticides in living systems. Front Chem 5(70):1–9. https://doi.org/10.3389/fchem.2017.00070

    Article  CAS  Google Scholar 

  • Singh M, Prasher P, Kim J (2018) Solution processed silver-nanowire/zinc oxide based transparent conductive electrode for efficient photovoltaic performance. Nano-Struct Nano-Objects 16:151–155

    Article  CAS  Google Scholar 

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle toxicity to Arabidopsis Thaliana. Environ Sci Technol 46:10247–10254

    CAS  PubMed  Google Scholar 

  • Sodango TH, Li X, Sha J, Bao Z (2018) Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: impacts and mitigation approaches. J Health Pollut 8(17):53–70. https://doi.org/10.5696/2156-9614-8.17.53

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava V, Sarkar A, Singh S, Singh P, de Araujo ASF, Singh RP (2017) Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Front Environ Sci 5:64. https://doi.org/10.3389/fenvs.2017.00064

    Article  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent Phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805

    Article  CAS  PubMed  Google Scholar 

  • Su C, Jiang LQ, Zhang WJ (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skeptics Critics 3(2):24–38

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2013) Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. Synth React Inorg, Met-Org, Nano-Met Chem 44:1128–1131

    Article  CAS  Google Scholar 

  • Tariq SR, Shafiq M, Chotana GA (2016) Distribution of heavy metals in the soils associated with the commonly used pesticides in cotton fields. Scientifica 2016:1–11. https://doi.org/10.1155/2016/7575239

    Article  CAS  Google Scholar 

  • Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellov M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25:795–821

    Article  CAS  Google Scholar 

  • Tiquia-Arashiro S, Rodrigues D (2016) Application of nanoparticles. In: Extremophiles: applications in nanotechnology. Springer, Cham

    Chapter  Google Scholar 

  • Van Hoecke K, De Schamphelaere KA, Van der Meeren P, Lucas S, Janssen CR (2008) Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environ Toxicol Chem 27:1948–1957

    Article  PubMed  Google Scholar 

  • Van Hoecke K, De Schamphelaere KA, Ramirez-Garcia S, Van der Meeren P, Smagghe G, Janssen CR (2011) Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents. Environ Int 37:1118–1125

    Article  PubMed  CAS  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of Cd and Zn by Thaspi caerulescens. Plant Soil 281(1–2):325–337

    Article  CAS  Google Scholar 

  • Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q et al (2013) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47:5442–5449

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    PubMed  PubMed Central  Google Scholar 

  • Wei C, Zhang Y, Guo J, Han B, Yang X, Yuan J (2010) Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J Environ Sci 22:155–160

    Article  CAS  Google Scholar 

  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Netw, ISRN Ecol 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Yang Z, Chen J, Dou R, Gao X et al (2015) Assessment of the Phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and Rice (Oryza sativa L.). Int J Environ Res Public Health 12:1500–15109

    Google Scholar 

  • Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12:158–169

    Article  CAS  Google Scholar 

  • Yasur J, Rani PU (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20:8636–8648

    Article  CAS  Google Scholar 

  • Zaidi S, Maurya C, Shankhadarwar S, Pius J (2014) Silver nanoparticles – chlorella interaction: effect on metabolites. In: Proceeding of the national conference on conservation of natural resources & biodiversity for sustainable development

    Google Scholar 

  • Zhao J, Cao X, Liu X, Wang Z, Zhang C, White JC, Xing B (2016) Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity. Nanotoxicology 10:1297–1305

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parteek Prasher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasher, P., Sharma, M., Mudila, H., Khati, B. (2019). Uptake, Accumulation, and Toxicity of Metal Nanoparticles in Autotrophs. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9370-0_7

Download citation

Publish with us

Policies and ethics