Skip to main content
Book cover

Tau Biology pp 373–380Cite as

Tau Oligomers

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1184))

Abstract

The accumulation of tau filaments in neurons is a pathological hallmark of various neurodegenerative diseases, including Alzheimer’s disease. However, it is not the filamentous aggregates themselves, but non-filamentous tau species, tau oligomer, that is thought to be the culprit in tau-mediated neurodegeneration. The definition of and methodology for isolating tau oligomers vary among researchers. Here we describe how tau oligomers are identified, summarize the differences of tau oligomers among research groups, and discuss their hypothesized functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   181.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   232.09
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron. 2011;70:410–26.

    Google Scholar 

  2. Ihara Y. PHF and PHF-like fibrils--cause or consequence? Neurobiol Aging [Internet]. 2001;22(1):123–6. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11164285

    Article  CAS  Google Scholar 

  3. Gómez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol. 1997;41(1):17–24.

    Article  PubMed  Google Scholar 

  4. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science [Internet]. 2005;309(5733):476–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16020737%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1574647

    CAS  Google Scholar 

  5. Kuchibhotla KV, Wegmann S, Kopeikina KJ, Hawkes J, Rudinskiy N, Andermann ML, et al. Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci. 2014;111:510–4.

    Article  CAS  PubMed  Google Scholar 

  6. Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science. 2001;293(5530):711–4.

    Article  CAS  PubMed  Google Scholar 

  7. Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E. RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett [Internet]. 1996;399(3):344–9. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8985176

    Article  CAS  Google Scholar 

  8. Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature [Internet]. 1996;383(6600):550–3. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8849730

    Article  CAS  Google Scholar 

  9. Perez M, Valpuesta JM, Medina M, Montejo de Garcini E, Avila J. Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction. J Neurochem [Internet]. 1996;67(3):1183–90. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8752125

    Article  CAS  Google Scholar 

  10. Chirita CN, Necula M, Kuret J. Anionic micelles and vesicles induce tau fibrillization in vitro. J Biol Chem. 2003;278(28):25644–50. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12730214

    Article  CAS  PubMed  Google Scholar 

  11. Maeda S, Sahara N, Saito Y, Murayama M, Yoshiike Y, Kim H, et al. Granular tau oligomers as intermediates of tau filaments. Biochemistry. 2007;46(12):3856–61.

    Article  CAS  PubMed  Google Scholar 

  12. Maeda S, Sahara N, Saito Y, Murayama S, Ikai A, Takashima A. Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer’s disease. Neurosci Res. 2006;54(3):197–201.

    Article  CAS  PubMed  Google Scholar 

  13. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep [Internet]. 2012;2:700. Available from: http://www.nature.com/srep/2012/121003/srep00700/full/srep00700.html

    Article  CAS  Google Scholar 

  14. Maeda S, Sato Y, Takashima A. Frontotemporal dementia with Parkinsonism linked to chromosome-17 mutations enhance tau oligomer formation. Neurobiol Aging. 2018;69:26–32.

    Article  CAS  PubMed  Google Scholar 

  15. Von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow EM, et al. Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J Biol Chem. 2001;276(51):48165–74.

    Article  Google Scholar 

  16. Sahara N, Maeda S, Murayama M, Suzuki T, Dohmae N, Yen SH, et al. Assembly of two distinct dimers and higher-order oligomers from full-length tau. Eur J Neurosci. 2007;25(10):3020–9.

    Article  PubMed  Google Scholar 

  17. Peterson DW, Zhou H, Dahlquist FW, Lew J. A soluble oligomer of tau associated with fiber formation analyzed by NMR. Biochemistry [Internet]. 2008;47(28):7393–404. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18558718

    Article  CAS  Google Scholar 

  18. Weaver CL, Espinoza M, Kress Y, Davies P. Conformational change as one of the earliest alterations of tau in Alzheimer’s disease. Neurobiol Aging [Internet]. 2000;21(5):719–27. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11016541

    Article  CAS  Google Scholar 

  19. Berger Z, Roder H, Hanna A, Carlson A, Rangachari V, Yue M, et al. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci. 2007;27(14):3650–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tepper K, Biernat J, Kumar S, Wegmann S, Timm T, Hübschmann S, et al. Oligomer formation of tau protein hyperphosphorylated in cells. J Biol Chem. 2014;289(49):34389–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A [Internet]. 2001;98(12):6923–8. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11381127

    Article  CAS  Google Scholar 

  22. Lasagna-Reeves CA, Castillo-Carranza DL, Guerrero-Muñoz MJ, Jackson GR, Kayed R. Preparation and characterization of neurotoxic tau oligomers. Biochemistry. 2010;49(47):10039–41.

    Article  CAS  PubMed  Google Scholar 

  23. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener. 2011;6(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Castillo-Carranza DL, Sengupta U, Guerrero-Muñoz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, et al. Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci [Internet]. 2014;34(12):4260–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24647946

    Article  CAS  Google Scholar 

  25. Castillo-Carranza DL, Gerson JE, Sengupta U, Guerrero-Muñoz MJ, Lasagna-Reeves CA, Kayed R. Specific targeting of tau oligomers in Htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis. 2014;40(Suppl 1):S97–S111.

    Article  CAS  PubMed  Google Scholar 

  26. Patterson KR, Remmers C, Fu Y, Brooker S, Kanaan NM, Vana L, et al. Characterization of prefibrillar tau oligomers in vitro and in Alzheimer disease. J Biol Chem. 2011;286(26):23063–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jicha GA, Bowser R, Kazam IG, Davies P. Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res [Internet]. 1997;48(2):128–32. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9130141

    Article  CAS  Google Scholar 

  28. Carmel G, Mager EM, Binder LI, Kuret J. The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J Biol Chem [Internet]. 1996;271(51):32789–95. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8955115

    Article  CAS  Google Scholar 

  29. Jeganathan S, Hascher A, Chinnathambi S, Biernat J, Mandelkow EM, Mandelkow E. Proline-directed pseudo-phosphorylation at AT8 and PHF1 epitopes induces a compaction of the paperclip folding of tau and generates a pathological (MC-1) conformation. J Biol Chem. 2008;283:32066–76.

    Article  CAS  PubMed  Google Scholar 

  30. Kanaan NM, Morfini GA, LaPointe NE, Pigino GF, Patterson KR, Song Y, et al. Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases. J Neurosci. 2011;31(27):9858–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. LaPointe NE, Morfini G, Pigino G, Gaisina IN, Kozikowski AP, Binder LI, et al. The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J Neurosci Res. 2009;87:440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kampers T, Pangalos M, Geerts H, Wiech H, Mandelkow E. Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer’s disease. FEBS Lett [Internet]. 1999;451(1):39–44. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10356980

    Article  CAS  Google Scholar 

  33. Cox K, Combs B, Abdelmesih B, Morfini G, Brady ST, Kanaan NM. Analysis of isoform-specific tau aggregates suggests a common toxic mechanism involving similar pathological conformations and axonal transport inhibition. Neurobiol Aging. 2016;47:113–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, et al. Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J. 2012;26:1946–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosenmann H, Grigoriadis N, Karussis D, Boimel M, Touloumi O, Ovadia H, et al. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch Neurol. 2006;63(10):1459–67.

    Article  PubMed  Google Scholar 

  36. Nacharaju P, Lewis J, Easson C, Yen S, Hackett J, Hutton M, Yen S-H. Accelerated filament formation from tau protein with specific FTDP-17 missense mutations. FEBS Lett. 1999;447 (2–3):195–9.

    Google Scholar 

  37. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature. 2004;431(7010):805–10.

    Google Scholar 

  38. Mudher A, Colin M, Dujardin S, Medina M, Dewachter I, Alavi Naini SM, et al. What is the evidence that tau pathology spreads through prion-like propagation? Acta Neuropathol Commun. 2017;5(1):99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11(7):909–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A, et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron. 2014;82(6):1271–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gerson JE, Kayed R. Formation and propagation of tau oligomeric seeds. Front Neurol. 2013;4:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2015;55:353–71.

    Article  CAS  PubMed  Google Scholar 

  43. Fontaine SN, Martin MD, Akoury E, Assimon VA, Borysov S, Nordhues BA, et al. The active Hsc70/tau complex can be exploited to enhance tau turnover without damaging microtubule dynamics. Hum Mol Genet. 2015;24:3971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abisambra J, Jinwal UK, Miyata Y, Rogers J, Blair L, Li X, et al. Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Biol Psychiatry. 2013;74:367–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soeda Y, Yoshikawa M, Almeida OFX, Sumioka A, Maeda S, Osada H, et al. Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups. Nat Commun [Internet]. 2015;6:1–12. https://doi.org/10.1038/ncomms10216.

    Article  CAS  Google Scholar 

  46. Shafiei SS, Guerrero-Muñoz MJ, Castillo-Carranza DL. Tau oligomers: cytotoxicity, propagation, and mitochondrial damage. Front Aging Neurosci. 2017;9:83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaniyappan S, Chandupatla RR, Mandelkow EM, Mandelkow E. Extracellular low-n oligomers of tau cause selective synaptotoxicity without affecting cell viability. Alzheimers Dement. 2017;13(11):1270–91.

    Article  PubMed  Google Scholar 

  48. Gómez-Ramos A, Díaz-Hernández M, Rubio A, Miras-Portugal MT, Avila J. Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol Cell Neurosci. 2008;37:673–81.

    Article  CAS  PubMed  Google Scholar 

  49. Jeganathan S, Von Bergen M, Brutlach H, Steinhoff HJ, Mandelkow E. Global hairpin folding of tau in solution. Biochemistry. 2006;45(7):2283–93.

    Article  CAS  PubMed  Google Scholar 

  50. Sahara N, Shimojo M, Ono M, Takuwa H, Febo M, Higuchi M, et al. In vivo tau imaging for a diagnostic platform of tauopathy using the rTg4510 mouse line. Front Neurol. 2017;8:663.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Gary Howard for editorial review. This research was partially supported by grants from the Cyclic Innovation for Clinical Empowerment (CiCLE) and the Acceleration Program for Intractable Diseases Research Utilizing Disease-specific iPS Cells from the Japan Agency for Medical Research and Development (AMED) and JSPS to SM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumihiro Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maeda, S., Takashima, A. (2019). Tau Oligomers. In: Takashima, A., Wolozin, B., Buee, L. (eds) Tau Biology. Advances in Experimental Medicine and Biology, vol 1184. Springer, Singapore. https://doi.org/10.1007/978-981-32-9358-8_27

Download citation

Publish with us

Policies and ethics