Skip to main content

Tau PET Imaging

  • Chapter
  • First Online:
Tau Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1184))

Abstract

The deposition of fibrillar tau aggregates has been implicated in Alzheimer’s disease (AD) and allied neurodegenerative disorders collectively referred to as tauopathies. Growing non-clinical and clinical evidence has supported intimate links between tau fibrillogenesis and neuronal deteriorations, rationalizing the development of imaging agents for tau fibrils to gain etiological insights into tauopathies and to facilitate diagnostic and therapeutic approaches to these diseases. Radiochemicals derived from three major chemotypes were initially applied to positron emission tomography (PET) studies of human subjects, demonstrating their utility for capturing AD-type tau deposits with reasonably high contrast. Meanwhile, these tracers suffered substantial off-target binding in the brain and did not offer sensitive detection of tau lesions in a large proportion of non-AD tauopathies. To overcome such drawbacks, ‘second-generation’ tau PET probes have been generated and examined in clinical settings. These tracers have enabled specific assays of AD tau pathologies, and a novel radiocompound developed by our research group has been shown to produce high contrasts for AD and non-AD tau aggregates, potentially allowing diagnostic evaluations of diverse tauopathies on an individual basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kovacs GG. Molecular pathological classification of neurodegenerative diseases: turning towards precision medicine. Int J Mol Sci. 2016;17(2). pii: E189. https://doi.org/10.3390/ijms17020189.

  2. Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem. 2003;46(13):2740–54.

    Article  CAS  PubMed  Google Scholar 

  3. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang GF, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004;55(3):306–19.

    Article  CAS  PubMed  Google Scholar 

  4. Klunk WE, Wang Y, Huang GF, Debnath ML, Holt DP, Shao L, Hamilton RL, Ikonomovic MD, DeKosky ST, Mathis CA. The binding of 2-(4′-methylaminophenyl) benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci. 2003;23(6):2086–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, Zhang MR, Trojanowski JQ, Lee VM, Ono M, Masamoto K, Takano H, Sahara N, Iwata N, Okamura N, Furumoto S, Kudo Y, Chang Q, Saido TC, Takashima A, Lewis J, Jang MK, Aoki I, Ito H, Higuchi M. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108. https://doi.org/10.1016/j.neuron.2013.07.037.

    Article  CAS  PubMed  Google Scholar 

  6. Fodero-Tavoletti MT, Okamura N, Furumoto S, Mulligan RS, Connor AR, McLean CA, Cao D, Rigopoulos A, Cartwright GA, O’Keefe G, Gong S, Adlard PA, Barnham KJ, Rowe CC, Masters CL, Kudo Y, Cappai R, Yanai K, Villemagne VL. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain. 2011;134(Pt 4):1089–100. https://doi.org/10.1093/brain/awr038.

    Article  PubMed  Google Scholar 

  7. Okamura N, Furumoto S, Fodero-Tavoletti MT, Mulligan RS, Harada R, Yates P, Pejoska S, Kudo Y, Masters CL, Yanai K, Rowe CC, Villemagne VL. Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain. 2014;137(Pt 6):1762–71. https://doi.org/10.1093/brain/awu064.

    Article  PubMed  Google Scholar 

  8. Chiotis K, Saint-Aubert L, Savitcheva I, Jelic V, Andersen P, Jonasson M, Eriksson J, Lubberink M, Almkvist O, Wall A, Antoni G, Nordberg A. Imaging in-vivo tau pathology in Alzheimer’s disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43(9):1686–99. https://doi.org/10.1007/s00259-016-3363-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, Tago T, Hiraoka K, Watanuki S, Shidahara M, Miyake M, Ishikawa Y, Matsuda R, Inami A, Yoshikawa T, Funaki Y, Iwata R, Tashiro M, Yanai K, Arai H, Kudo Y. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57(2):208–14. https://doi.org/10.2967/jnumed.115.164848.

    Article  CAS  PubMed  Google Scholar 

  10. Brendel M, Schönecker S, Höglinger G, Lindner S, Havla J, Blautzik J, Sauerbeck J, Rohrer G, Zach C, Vettermann F, Lang AE, Golbe L, Nübling G, Bartenstein P, Furukawa K, Ishiki A, Bötzel K, Danek A, Okamura N, Levin J, Rominger A. [18F]-THK5351 PET correlates with topology and symptom severity in progressive supranuclear palsy. Front Aging Neurosci. 2018;9:440. https://doi.org/10.3389/fnagi.2017.00440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kikuchi A, Okamura N, Hasegawa T, Harada R, Watanuki S, Funaki Y, Hiraoka K, Baba T, Sugeno N, Oshima R, Yoshida S, Kobayashi J, Ezura M, Kobayashi M, Tano O, Mugikura S, Iwata R, Ishiki A, Furukawa K, Arai H, Furumoto S, Tashiro M, Yanai K, Kudo Y, Takeda A, Aoki M. In vivo visualization of tau deposits in corticobasal syndrome by 18F-THK5351 PET. Neurology. 2016;87(22):2309–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, Guiot MC, Guo Q, Harada R, Comley RA, Massarweh G, Soucy JP, Okamura N, Gauthier S, Rosa-Neto P. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimers Res Ther. 2017;9(1):25. https://doi.org/10.1186/s13195-017-0253-y.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Harada R, Ishiki A, Kai H, Sato N, Furukawa K, Furumoto S, Tago T, Tomita N, Watanuki S, Hiraoka K, Ishikawa Y, Funaki Y, Nakamura T, Yoshikawa T, Iwata R, Tashiro M, Sasano H, Kitamoto T, Yanai K, Arai H, Kudo Y, Okamura N. Correlations of 18F-THK5351 PET with postmortem burden of tau and Astrogliosis in Alzheimer disease. J Nucl Med. 2018;59(4):671–4. https://doi.org/10.2967/jnumed.117.197426.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W, Arteaga J, Cashion DK, Chen G, Gangadharmath U, Gomez LF, Kasi D, Lam C, Liang Q, Liu C, Mocharla VP, Mu F, Sinha A, Szardenings AK, Wang E, Walsh JC, Xia C, Yu C, Zhao T, Kolb HC. A highly selective and specific PET tracer for imaging of tau pathologies. J Alzheimers Dis. 2012;31(3):601–12. https://doi.org/10.3233/JAD-2012-120712.

    Article  CAS  PubMed  Google Scholar 

  15. Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, Shankle WR, Elizarov A, Kolb HC. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34(2):457–68. https://doi.org/10.3233/JAD-122059.

    Article  CAS  PubMed  Google Scholar 

  16. Chien DT, Szardenings AK, Bahri S, Walsh JC, Mu F, Xia C, Shankle WR, Lerner AJ, Su MY, Elizarov A, Kolb HC. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. J Alzheimers Dis. 2014;38(1):171–84. https://doi.org/10.3233/JAD-130098.

    Article  PubMed  Google Scholar 

  17. Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, Mormino E, Chhatwal J, Amariglio R, Papp K, Marshall G, Albers M, Mauro S, Pepin L, Alverio J, Judge K, Philiossaint M, Shoup T, Yokell D, Dickerson B, Gomez-Isla T, Hyman B, Vasdev N, Sperling R. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016;79(1):110–9. https://doi.org/10.1002/ana.24546.. Epub 2015 Dec 15

    Article  PubMed  Google Scholar 

  18. Tosun D, Landau S, Aisen PS, Petersen RC, Mintun M, Jagust W, Weiner MW, Initiative A’s DN. Association between tau deposition and antecedent amyloid-β accumulation rates in normal and early symptomatic individuals. Brain. 2017;140(5):1499–512.

    Article  PubMed  Google Scholar 

  19. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92. https://doi.org/10.1016/j.jalz.2011.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9. https://doi.org/10.1016/j.jalz.2011.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9. https://doi.org/10.1016/j.jalz.2011.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shimada H, Kitamura S, Shinotoh H, Endo H, Niwa F, Hirano S, Kimura Y, Zhang MR, Kuwabara S, Suhara T, Higuchi M. Association between Aβ and tau accumulations and their influence on clinical features in aging and Alzheimer’s disease spectrum brains: a [11C]PBB3-PET study. Alzheimers Dement (Amst). 2016;6:11–20. https://doi.org/10.1016/j.dadm.2016.12.009.

    Article  Google Scholar 

  23. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, Arnold SE, Attems J, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Gearing M, Grinberg LT, Hof PR, Hyman BT, Jellinger K, Jicha GA, Kovacs GG, Knopman DS, Kofler J, Kukull WA, Mackenzie IR, Masliah E, McKee A, Montine TJ, Murray ME, Neltner JH, Santa-Maria I, Seeley WW, Serrano-Pozo A, Shelanski ML, Stein T, Takao M, Thal DR, Toledo JB, Troncoso JC, Vonsattel JP, White CL 3rd, Wisniewski T, Woltjer RL, Yamada M, Nelson PT. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128(6):755–66. https://doi.org/10.1007/s00401-014-1349-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jack CR Jr, Wiste HJ, Schwarz CG, Lowe VJ, Senjem ML, Vemuri P, Weigand SD, Therneau TM, Knopman DS, Gunter JL, Jones DT, Graff-Radford J, Kantarci K, Roberts RO, Mielke MM, Machulda MM, Petersen RC. Longitudinal tau PET in ageing and Alzheimer’s disease. Brain. 2018;141(5):1517–28.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Siderowf A, Keene C, Beach T, Montine T, Arora A, Devous M, Navitsky M, Kennedy I, Joshi A, Pontecorvo M, Lu M, Serrano G, Rose S, Wilson A, Hellstern L, Coleman N, Mintun M. Comparison of regional flortaucipir PET SUVr values to quantitative tau histology and quantitative tau immunoassay in patients with Alzheimer’s disease pathology: a clinico-pathological study. J Nucl Med. 2017;58(Suppl 1):629.

    Google Scholar 

  26. Ono M, Sahara N, Kumata K, Ji B, Ni R, Koga S, Dickson DW, Trojanowski JQ, Lee VM, Yoshida M, Hozumi I, Yoshiyama Y, van Swieten JC, Nordberg A, Suhara T, Zhang MR, Higuchi M. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain. 2017;140(3):764–80. https://doi.org/10.1093/brain/aww339.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marquié M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, Klunk WE, Mathis CA, Ikonomovic MD, Debnath ML, Vasdev N, Dickerson BC, Gomperts SN, Growdon JH, Johnson KA, Frosch MP, Hyman BT, Gómez-Isla T. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78(5):787–800. https://doi.org/10.1002/ana.24517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schonhaut DR, McMillan CT, Spina S, Dickerson BC, Siderowf A, Devous MD Sr, Tsai R, Winer J, Russell DS, Litvan I, Roberson ED, Seeley WW, Grinberg LT, Kramer JH, Miller BL, Pressman P, Nasrallah I, Baker SL, Gomperts SN, Johnson KA, Grossman M, Jagust WJ, Boxer AL, Rabinovici GD. 18F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study. Ann Neurol. 2017;82(4):622–34. https://doi.org/10.1002/ana.25060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marquié M, Normandin MD, Meltzer AC, Siao Tick Chong M, Andrea NV, Antón-Fernández A, Klunk WE, Mathis CA, Ikonomovic MD, Debnath M, Bien EA, Vanderburg CR, Costantino I, Makaretz S, DeVos SL, Oakley DH, Gomperts SN, Growdon JH, Domoto-Reilly K, Lucente D, Dickerson BC, Frosch MP, Hyman BT, Johnson KA, Gómez-Isla T. Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies. Ann Neurol. 2017;81(1):117–28. https://doi.org/10.1002/ana.24844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Endo H, Shimada H, Sahara N, Ono M, Koga S, Kitamura S, Niwa F, Hirano S, Kimura Y, Ichise M, Shinotoh H, Zhang MR, Kuwabara S, Dickson DW, Toda T, Suhara T, Higuchi M. In-vivo binding of a tau imaging probe, [11C]PBB3, in patients with progressive supranuclear palsy. Mov Diord. in press

    Google Scholar 

  31. Ikeda A, Shimada H, Nishioka K, Takanashi M, Hayashida A, Li Y, Yoshino H, Funayama M, Ueno Y, Hatano T, Sahara N, Suhara T, Higuchi M, Hattori N. Clinical heterogeneity of frontotemporal dementia and parkinsonism linked to chromosome 17 caused by MAPT N279K mutation in relation to tau positron emission tomography features. Mov Disord. 2019; https://doi.org/10.1002/mds.27623.

  32. Hashimoto H, Kawamura K, Igarashi N, Takei M, Fujishiro T, Aihara Y, Shiomi S, Muto M, Ito T, Furutsuka K, Yamasaki T, Yui J, Xie L, Ono M, Hatori A, Nemoto K, Suhara T, Higuchi M, Zhang MR. Radiosynthesis, photoisomerization, biodistribution, and metabolite analysis of 11C-PBB3 as a clinically useful PET probe for imaging of tau pathology. J Nucl Med. 2014;55(9):1532–8. https://doi.org/10.2967/jnumed.114.139550.

    Article  CAS  PubMed  Google Scholar 

  33. Hashimoto H, Kawamura K, Takei M, Igarashi N, Fujishiro T, Shiomi S, Watanabe R, Muto M, Furutsuka K, Ito T, Yamasaki T, Yui J, Nemoto K, Kimura Y, Higuchi M, Zhang MR. Identification of a major radiometabolite of [11C]PBB3. Nucl Med Biol. 2015;42(12):905–10. https://doi.org/10.1016/j.nucmedbio.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  34. Shimada H, Kitamura S, Ono M, Kimura Y, Ichise M, Takahata K, Moriguchi S, Kubota M, Ishii T, Takado Y, Seki C, Hirano S, Shinotoh H, Sahara N, Tempest P, Tamagnan G, Seibyl J, Barret O, Alagille D, Zhang MR, Kuwabara S, Jang MK, Marek K, Suhara T, Higuchi M. First-in-human PET study with 18F-AM-PBB3 and 18F-PM-PBB3. Alzheimer Dement. 2017;7(Suppl 7):P1104.

    Article  Google Scholar 

  35. Barret O, Seibyl J, Stephens A, Madonia J, Alagille D, Mueller A, Berndt M, Kroth H, Capotosti F, Muhs A, Pfeifer A, Tamagnan G, Dinkelborg L, Marek K. First-in-human PET studies with the next generation tau agent 18-F PI-2620 in Alzheimer’s disease, progressive supranuclear palsy, and controls. Alzheimer Dement. 2017;13(7):P3–4.

    Article  Google Scholar 

  36. Bohorquez SS, Barret O, Tamagnan G, Alagille D, Seibyl J, Marek K, de Crespigny A, Weimer R. Assessing optimal injected dose for tau PET imaging using [18F]GTP1 (Genentech Tau Probe 1). J Nucl Med. 2017;58(Suppl 1):848.

    Google Scholar 

  37. Honer M, Gobbi L, Knust H, Kuwabara H, Muri D, Koerner M, Valentine H, Dannals RF, Wong DF, Borroni E. Preclinical evaluation of 18F-RO6958948, 11C-RO6931643, and 11C-RO6924963 as novel PET radiotracers for imaging tau aggregates in Alzheimer disease. J Nucl Med. 2018;59(4):675–81. https://doi.org/10.2967/jnumed.117.196741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong DF, Borroni E, Kuwabara H, George N, Rosenberg P, Lyketsos C, Resnick SM, Thambisetty M, Brasic J, Gapasin L, Willis W, Knust H, Guerard M, Belli S, Muri D, Carey T, Bedding A, Wandel C, Hansrod T, Honer M, Moghekar A, Boess F, Albert MS, Shaya E, Oh E, Ostrowitzki S, Dannals RF, Comley RA. First in-human PET study of 3 novel tau radiopharmaceuticals: [11C]RO6924963, [11C]RO6931643, and [18F]RO6958948. Alzheimer Dement. 2015;11(7):P850–1.

    Article  Google Scholar 

  39. Betthauser TJ, Cody KA, Zammit MD, Murali D, Converse AK, Barnhart TE, Stone CK, Rowley HA, Johnson SC, Christian BT. In vivo characterization and quantification of neurofibrillary tau PET radioligand [18F]MK-6240 in humans from Alzheimer’s disease dementia to young controls. J Nucl Med. 2018;. pii: jnumed.118.209650; https://doi.org/10.2967/jnumed.118.209650.

  40. Ikonomovic MD, Abrahamson EE, Price JC, Mathis CA, Klunk WE. [F-18]AV-1451 positron emission tomography retention in choroid plexus: more than "off-target" binding. Ann Neurol. 2016;80(2):307–8. https://doi.org/10.1002/ana.24706.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marquié M, Verwer EE, Meltzer AC, Kim SJW, Agüero C, Gonzalez J, Makaretz SJ, Siao Tick Chong M, Ramanan P, Amaral AC, Normandin MD, Vanderburg CR, Gomperts SN, Johnson KA, Frosch MP, Gómez-Isla T. Lessons learned about [F-18]-AV-1451 off-target binding from an autopsy-confirmed Parkinson’s case. Acta Neuropathol Commun. 2017;5(1):75. https://doi.org/10.1186/s40478-017-0482-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wen GY, Wisniewski HM, Kascsak RJ. Biondi ring tangles in the choroid plexus of Alzheimer’s disease and normal aging brains: a quantitative study. Brain Res. 1999;832(1–2):40–6.

    Article  CAS  PubMed  Google Scholar 

  43. Tatebe H, Kasai T, Ohmichi T, Kishi Y, Kakeya T, Waragai M, Kondo M, Allsop D, Tokuda T. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer’s disease and down syndrome. Mol Neurodegener. 2017;12(1):63. https://doi.org/10.1186/s13024-017-0206-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Higuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Higuchi, M. (2019). Tau PET Imaging. In: Takashima, A., Wolozin, B., Buee, L. (eds) Tau Biology. Advances in Experimental Medicine and Biology, vol 1184. Springer, Singapore. https://doi.org/10.1007/978-981-32-9358-8_18

Download citation

Publish with us

Policies and ethics