Skip to main content

Robust Single Image Super Resolution Employing ADMM with Plug-and-Play Prior

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on Computer Vision and Image Processing

Abstract

Image super resolution is a signal processing technique to post-process a captured image to retrieve its high-resolution version. Majority of the conventional super resolution methods fail to perform in presence of noise. In this paper, a noise robust reconstruction based single image super resolution (SISR) algorithm is proposed, using alternating direction method of multipliers (ADMM) and plug-and-play modeling. The plug-and-play prior concept is incorporated to the two variable update steps in ADMM. Therefore, a fast SISR model and a denoiser are used in ADMM to implement the proposed robust SISR scheme. The experimental results show that the noise performance of the proposed approach is better than the conventional methods. The impact of parameter selection on the performance of the algorithm is experimentally analyzed and the results are presented.

Abdu Rahiman V thank TEQIP Phase II for the funding provided to attend the conference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  2. Yue, L., Shen, H., Li, J., Yuan, Q., HongyanZhang, Zhang, L.: Image super-resolution: the techniques, applications and future. Signal Process. 14, 389–408 (2016)

    Article  Google Scholar 

  3. Nasrollahi, K., Moeslund, T.B.: Super-resolution: a comprehensive survey. Mach. Vis. Appl. 25(6), 1423–1468 (2014)

    Article  Google Scholar 

  4. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  5. Rahiman, V.A., George, S.N.: Single image super resolution using neighbor embedding and statistical prediction model. Comput. Electr. Eng. 62, 281–292 (2017)

    Google Scholar 

  6. Rahiman, V.A., George, S.N.: Single image super resolution using neighbor embedding and fusion in wavelet domain. Comput. Electr. Eng. 1–16 (2017)

    Google Scholar 

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Proceedings of European Conference on Computer Vision (ECCV) (2014)

    Google Scholar 

  8. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  9. Zhao, N., Wei, Q., Basarab, A., Kouame, D., Tourneret, J.Y.: Fast single image super-resolution using a new analytical solution for \(\ell _2\) - \(\ell _2\) problems. IEEE Trans. Image Process. 25(8), 3683–3697 (2016)

    Article  MathSciNet  Google Scholar 

  10. Venkatakrishnan, S., Bouman, C., Wohlberg, B.: Plug and play priors for model based reconstruction. In: Proceedings of IEEE Global Conference on Signal and Information Processing, pp. 945–948 (2013)

    Google Scholar 

  11. Brifman, A., Romano, Y., Elad, M.: Turning a denoiser into a super resolver using plug and play priors. In: Proceedings in Proceedings of the IEEE International Conference on Image Processing, pp. 1404–1408 (2016)

    Google Scholar 

  12. Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play admm for image restoration: fixed point convergence and applications. IEEE Trans. Comput. Imaging 3(1), 84–98 (2017)

    Article  MathSciNet  Google Scholar 

  13. Liu, X., Tanaka, M., Okutomi, M.: Single-image noise level estimation for blind denoising. IEEE Trans. Image Process. 22(12), 5226–5237 (2013)

    Article  Google Scholar 

  14. Blanchet, G., Moisan, L.: An explicit sharpness index related to global phase coherence. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 1065–1068 (2012)

    Google Scholar 

  15. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. on Image Process. 16(8) (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Abdu Rahiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdu Rahiman, V., George, S. . (2020). Robust Single Image Super Resolution Employing ADMM with Plug-and-Play Prior. In: Chaudhuri, B., Nakagawa, M., Khanna, P., Kumar, S. (eds) Proceedings of 3rd International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 1024. Springer, Singapore. https://doi.org/10.1007/978-981-32-9291-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9291-8_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9290-1

  • Online ISBN: 978-981-32-9291-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics