Skip to main content

Internet-Based Management for Depressive Disorder

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1180)

Abstract

The advances in the Internet and related technologies may lead to changes in professional roles of psychiatrists and psychotherapists. The application of artificial intelligence (AI) and electronic measurement-based care (eMBC) in the treatment of depressive disorder has addressed more interest. AI could play a role in population health management and patient administration as well as assist physicians to make a decision in the real-world clinical practice. The eMBC strengthens MBC through web/mobile devices and telephone consulting services, to monitor disease progression, and customizes the MBC interface in electronic medical record systems (EMRs).

Keywords

  • Depressive disorder
  • Therapy
  • Artificial intelligence (AI)
  • Measurement-Based Care (MBC)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-32-9271-0_14
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-981-32-9271-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 14.1

References

  • Abbasi J (2017) 23andMe, big data, and the genetics of depression. JAMA 317(1):14–16

    CrossRef  Google Scholar 

  • Abbott CC, Loo D, Sui J (2016) Determining electroconvulsive therapy response with machine learning. JAMA Psychiatry 73(6):545–546

    CrossRef  Google Scholar 

  • Aziz HA (2016) Handling big data in modern healthcare. Lab Med 47(4):e38–e41

    CrossRef  Google Scholar 

  • Bauer AM, Baldwin SA, Anguera JA et al (2018) Comparing approaches to mobile depression assessment for measurement-based care: prospective study. J Med Internet Res 20(6):e10001

    CrossRef  Google Scholar 

  • Bremer V, Becker D, Kolovos S et al (2018) Predicting therapy success and costs for personalized treatment recommendations using baseline characteristics: data-driven analysis. J Med Internet Res 20(8):e10275

    CrossRef  Google Scholar 

  • Chekroud AM, Zotti RJ, Shehzad Z et al (2016) Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry 3(3):243–250

    CrossRef  Google Scholar 

  • Cho CH, Lee T, Kim MG et al (2019) Mood prediction of patients with mood disorders by machine learning using passive digital phenotypes based on the circadian rhythm: prospective observational cohort study. J Med Internet Res 21(4):e11029

    CrossRef  Google Scholar 

  • CMHA-BC (2016) Bounce back: reclaim your health. Annual Report, 2015–2016. Canadian Mental Health Association, Vancouver, BC

    Google Scholar 

  • Cohen ZD, Derubeis RJ (2018) Treatment selection in depression. Annu Rev Clin Psychol 14:209–236

    CrossRef  Google Scholar 

  • Diniz BS, Lin CW, Sibille E et al (2016) Circulating biosignatures of late-life depression (LLD): towards a comprehensive, data-driven approach to understanding LLD pathophysiology. J Psychiatr Res 82:1–7

    CrossRef  Google Scholar 

  • Dipnall JF, Pasco JA, Berk M et al (2017) Why so GLUMM? Detecting depression clusters through graphing lifestyle-environs using machine-learning methods (GLUMM). Eur Psychiatry 39:40–50

    CAS  CrossRef  Google Scholar 

  • Ferrari P, Parisi MM, Colombo R et al (2018) Depression and mania induce pro-inflammatory activation of macrophages following application of serum from individuals with bipolar disorder. Clin Psychopharmacol Neurosci 16(1):103–108

    CAS  CrossRef  Google Scholar 

  • Goldberg SB, Buck B, Raphaely S et al (2018) Measuring psychiatric symptoms remotely: a systematic review of remote measurement-based care. Curr Psychiatry Rep 20(10):81

    CrossRef  Google Scholar 

  • Goldstein LA, Connolly Gibbons MB, Thompson SM et al (2011) Outcome assessment via handheld computer in community mental health: consumer satisfaction and reliability. J Behav Health Serv Res 38(3):414–423

    CrossRef  Google Scholar 

  • Horvitz E, Mulligan D (2015) Policy forum. Data, privacy, and the greater good. Science 349(6245):253–255

    CAS  CrossRef  Google Scholar 

  • Khodayarirostamabad A, Reilly JP, Hasey GM et al (2013) A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder. Clin Neurophysiol 124(10):1975–1985

    CrossRef  Google Scholar 

  • Koutsouleris N, Kambeitz-Ilankovic L, Ruhrmann S et al (2018) Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression: a multimodal, multisite machine learning analysis. JAMA Psychiatry 75(11):1156–1172

    CrossRef  Google Scholar 

  • Lam RW, Milev R, Rotzinger S et al (2016) Discovering biomarkers for antidepressant response: protocol from the Canadian biomarker integration network in depression (CAN-BIND) and clinical characteristics of the first patient cohort. BMC Psychiatry 16:105

    CrossRef  Google Scholar 

  • Lewis CC, Scott K, Marti CN et al (2015) Implementing measurement-based care (iMBC) for depression in community mental health: a dynamic cluster randomized trial study protocol. Implement Sci 10:127

    CrossRef  Google Scholar 

  • Maciukiewicz M, Marshe VS, Hauschild AC et al (2018) GWAS-based machine learning approach to predict duloxetine response in major depressive disorder. J Psychiatr Res 99:62–68

    CrossRef  Google Scholar 

  • Mourao-Miranda J, Almeida JR, Hassel S et al (2012) Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression. Bipolar Disord 14(4):451–460

    CrossRef  Google Scholar 

  • Mwangi B, Ebmeier KP, Matthews K et al (2012) Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain 135(Pt 5):1508–1521

    CrossRef  Google Scholar 

  • Oslin DW, Hoff R, Mignogna J et al (2019) Provider attitudes and experience with measurement-based mental health care in the VA implementation project. Psychiatr Serv 70(2):135–138

    CrossRef  Google Scholar 

  • Perlis RH (2013) A clinical risk stratification tool for predicting treatment resistance in major depressive disorder. Biol Psychiatry 74(1):7–14

    CrossRef  Google Scholar 

  • Redlich R, Opel N, Grotegerd D et al (2016) Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiatry 73(6):557–564

    CrossRef  Google Scholar 

  • Topolovec-Vranic J, Cullen N, Michalak A et al (2010) Evaluation of an online cognitive behavioural therapy program by patients with traumatic brain injury and depression. Brain Inj 24(5):762–772

    CrossRef  Google Scholar 

  • Trivedi MH, Rush AJ, Wisniewski SR et al (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163(1):28–40

    CrossRef  Google Scholar 

  • Trivedi MH, Rush AJ, Gaynes BN et al (2007) Maximizing the adequacy of medication treatment in controlled trials and clinical practice: STAR*D measurement-based care. Neuropsychopharmacology 32(12):2479–2489

    CAS  CrossRef  Google Scholar 

  • Victor E, Aghajan ZM, Sewart AR et al (2019) Detecting depression using a framework combining deep multimodal neural networks with a purpose-built automated evaluation. Psychol Assess

    Google Scholar 

  • Waldrop J, Mcguinness TM (2017) Measurement-based care in psychiatry. J Psychosoc Nurs Ment Health Serv 55(11):30–35

    CrossRef  Google Scholar 

  • Watson DS, Krutzinna J, Bruce IN et al (2019) Clinical applications of machine learning algorithms: beyond the black box. BMJ 364:l886

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuowei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Niu, Z., Yang, L., Cui, L. (2019). Internet-Based Management for Depressive Disorder. In: Fang, Y. (eds) Depressive Disorders: Mechanisms, Measurement and Management. Advances in Experimental Medicine and Biology, vol 1180. Springer, Singapore. https://doi.org/10.1007/978-981-32-9271-0_14

Download citation