Skip to main content

Individualized Treatment Strategy for Depressive Disorder

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1180)

Abstract

The goal of treatment for depressive disorders is complete remission of depressive symptoms with full recovery of social function and prevention of recurrence. However, a large proportion of patients do not experience symptomatic remission after the initial treatment, with even lower rates of remission in the longer treatment term. The main objective of individualized treatment applied in psychiatry is to improve precision in disease diagnosis, prognosis, treatment choices, and treatment response. Diverse approaches and techniques, such as genomics, epigenomics, other omics, neural circuit, and artificial intelligence are related to precision psychiatry. Using biology and computational psychiatry tools to find potential biomarkers, and based on precision psychiatry, patients considered to belong to the same endophenotype will be possible to receive biomarkers-based treatment and better prognosis. Especially in the choice of intervention, individualized treatment should be considered. In this review, we present the development of precise treatment in depressive disorders and introduce advances in several domains toward precision medicine and individualized treatment. We pay particular attention to biomarkers and the development of new technologies in depressive disorders, which will help disease complete remission and functional recovery, seek better lives for patients suffered with depressive disorders.

Keywords

  • Depressive disorders
  • Individualized treatment
  • Precision medicine
  • Genomics
  • Neural circuit
  • Artificial intelligence

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-32-9271-0_12
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-981-32-9271-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)

References

  • Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM (2008) Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63(7):642–649

    CAS  PubMed  CrossRef  Google Scholar 

  • Alberti S, Chiesa A, Andrisano C, Serretti A (2015) Insomnia and somnolence associated with second-generation antidepressants during the treatment of major depression: a meta-analysis. J Clin Psychopharmacol 35(3): 296–303

    Google Scholar 

  • Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA, Cascante M, Brennan L, Wishart DS, Oresic M, Hankemeier T, Broadhurst DI, Lane AN, Suhre K, Kastenmuller G, Sumner SJ, Thiele I, Fiehn O, Kaddurah-Daouk R (2016) “Precision medicine pharmacometabolomics task group”-metabolomics society I. Metabolomics enables precision medicine: “A white paper, community perspective”. Metabolomics 12(10):149

    Google Scholar 

  • Borsboom D, Cramer AO, Schmittmann VD, Epskamp S, Waldorp LJ (2011) The small world of psychopathology. PLoS ONE 6(11):e27407

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Casey BJ, Craddock N, Cuthbert BN, Hyman SE, Lee FS, Ressler KJ (2013) DSM-5 and RDoC: progress in psychiatry research? Nat Rev Neurosci 14(11):810–814

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Castren E, Rantamaki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70(5):289–297

    CAS  PubMed  CrossRef  Google Scholar 

  • Corcoran CM, Carrillo F, Fernandez-Slezak D, Bedi G, Klim C, Javitt DC, Bearden CE, Cecchi GA (2018) Prediction of psychosis across protocols and risk cohorts using automated language analysis. World Psychiatry 17(1):67–75

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dalvie S, Koen N, McGregor N, O’Connell K, Warnich L, Ramesar R, Nievergelt CM, Stein DJ (2016) Toward a global roadmap for precision medicine in psychiatry: challenges and opportunities. OMICS 20(10):557–564

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Domschke K, Tidow N, Schwarte K, Deckert J, Lesch KP, Arolt V, Zwanzger P, Baune BT (2014) Serotonin transporter gene hypomethylation predicts impaired antidepressant treatment response. Int J Neuropsychopharmacol 17(8):1167–1176

    CAS  PubMed  CrossRef  Google Scholar 

  • Dreimuller N, Schlicht KF, Wagner S, Peetz D, Borysenko L, Hiemke C, Lieb K, Tadic A (2012) Early reactions of brain-derived neurotrophic factor in plasma (pBDNF) and outcome to acute antidepressant treatment in patients with major depression. Neuropharmacology 62(1):264–269

    PubMed  CrossRef  CAS  Google Scholar 

  • Duclot F, Kabbaj M (2015) Epigenetic mechanisms underlying the role of brain-derived neurotrophic factor in depression and response to antidepressants. J Exp Biol 218(Pt 1):21–31

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fabbri C, Serretti A (2015) Pharmacogenetics of major depressive disorder: top genes and pathways toward clinical applications. Curr Psychiatry Rep 17(7):50

    PubMed  CrossRef  Google Scholar 

  • Fabbri C, Porcelli S, Serretti A (2014) From pharmacogenetics to pharmacogenomics: the way toward the personalization of antidepressant treatment. Can J Psychiatry 59(2):62–75

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fernandes BS, Williams LM, Steiner J, Leboyer M, Carvalho AF, Berk M (2017) The new field of ‘precision psychiatry’. BMC Med 15(1):80

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • First MB, Reed GM, Hyman SE, Saxena S (2015) The development of the ICD-11 clinical descriptions and diagnostic guidelines for mental and behavioural disorders. World Psychiatry 14(1):82–90

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gaynes BN, Warden D, Trivedi MH, Wisniewski SR, Fava M, Rush AJ (2009) What did STAR*D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatr Serv 60(11):1439–1445

    PubMed  CrossRef  Google Scholar 

  • Gaynes BN, Rush AJ, Trivedi MH, Wisniewski SR, Balasubramani GK, McGrath PJ, Thase ME, Klinkman M, Nierenberg AA, Yates WR, Fava M (2008) Primary versus specialty care outcomes for depressed outpatients managed with measurement-based care: results from STAR*D. J Gen Intern Med 23(5):551–560

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gitlin MJ, Miklowitz DJ (2014) Psychiatric diagnosis in ICD-11: lessons learned (or not) from the mood disorders section in DSM-5. Aust NZ J Psychiatry 48(1):89–90

    CrossRef  Google Scholar 

  • Gonda X, Petschner P, Eszlari N, Baksa D, Edes A, Antal P, Juhasz G, Bagdy G (2019) Genetic variants in major depressive disorder: From pathophysiology to therapy. Pharmacol Ther 194: 22–43

    CAS  CrossRef  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258

    CAS  PubMed  CrossRef  Google Scholar 

  • Guo T, Xiang YT, Xiao L, Hu CQ, Chiu HF, Ungvari GS, Correll CU, Lai KY, Feng L, Geng Y, Feng Y, Wang G (2015) Measurement-based care versus standard care for major depression: a randomized controlled trial with blind raters. Am J Psychiatry 172(10):1004–1013

    PubMed  CrossRef  Google Scholar 

  • Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35(1):4–26

    PubMed  CrossRef  Google Scholar 

  • Haile CN, Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Foulkes A, Iqbal S, Mahoney JJ 3rd, De La Garza R 2nd, Charney DS, Newton TF, Mathew SJ (2014) Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int J Neuropsychopharmacol 17(2): 331–336

    PubMed  CrossRef  CAS  Google Scholar 

  • Hamilton SP (2015) The promise of psychiatric pharmacogenomics. Biol Psychiatry 77(1):29–35

    PubMed  CrossRef  Google Scholar 

  • Huys QJ, Maia TV, Frank MJ (2016) Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 19(3):404–413

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Insel TR (2014) The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am J Psychiatry 171(4):395–397

    PubMed  CrossRef  Google Scholar 

  • Iosifescu DV (2011) Electroencephalography-derived biomarkers of antidepressant response. Harv Rev Psychiatry 19(3):144–154

    PubMed  CrossRef  Google Scholar 

  • IsHak WW, Greenberg JM, Balayan K, Kapitanski N, Jeffrey J, Fathy H, Fakhry H, Rapaport MH (2011) Quality of life: the ultimate outcome measure of interventions in major depressive disorder. Harv Rev Psychiatry 19(5):229–239

    PubMed  CrossRef  Google Scholar 

  • Januar V, Saffery R, Ryan J (2015) Epigenetics and depressive disorders: a review of current progress and future directions. Int J Epidemiol 44(4):1364–1387

    PubMed  CrossRef  Google Scholar 

  • Kirchheiner J, Bertilsson L, Bruus H, Wolff A, Roots I, Bauer M (2003) Individualized medicine—implementation of pharmacogenetic diagnostics in antidepressant drug treatment of major depressive disorders. Pharmacopsychiatry 36(Suppl 3):S235–S243

    CAS  PubMed  Google Scholar 

  • Kraft JB, Slager SL, McGrath PJ, Hamilton SP (2005) Sequence analysis of the serotonin transporter and associations with antidepressant response. Biol Psychiatry 58(5):374–381

    CAS  PubMed  CrossRef  Google Scholar 

  • Laje G, McMahon FJ (2011) Genome-wide association studies of antidepressant outcome: a brief review. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1553–1557

    CAS  PubMed  CrossRef  Google Scholar 

  • Lisoway AJ, Zai CC, Tiwari AK, Kennedy JL (2018) DNA methylation and clinical response to antidepressant medication in major depressive disorder: a review and recommendations. Neurosci Lett 669:14–23

    CAS  PubMed  CrossRef  Google Scholar 

  • Lopez JP, Mamdani F, Labonte B, Beaulieu MM, Yang JP, Berlim MT, Ernst C, Turecki G (2013) Epigenetic regulation of BDNF expression according to antidepressant response. Mol Psychiatry 18(4):398–399

    CAS  PubMed  CrossRef  Google Scholar 

  • Lovejoy CA, Buch V, Maruthappu M (2019) Technology and mental health: the role of artificial intelligence. Eur Psychiatry 55:1–3

    PubMed  CrossRef  Google Scholar 

  • Lunn MP, Hughes RA, Wiffen PJ (2014) Duloxetine for treating painful neuropathy, chronic pain or fibromyalgia. Cochrane Database Syst Rev (1):CD007115

    Google Scholar 

  • Malhi GS, Mann JJ (2018) Depression. Lancet, 392(10161): 2299–2312

    Google Scholar 

  • McGorry P, Keshavan M, Goldstone S, Amminger P, Allott K, Berk M, Lavoie S, Pantelis C, Yung A, Wood S, Hickie I (2014) Biomarkers and clinical staging in psychiatry. World Psychiatry 13(3):211–223

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Miller S, McTeague LM, Gyurak A, Patenaude B, Williams LM, Grieve SM, Korgaonkar MS, Etkin A (2015) Cognition-childhood maltreatment interactions in the prediction of antidepressant outcomes in major depressive disorder patients: results from the iSPOT-D trial. Depress Anxiety 32(8):594–604

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Milev RV, Giacobbe P, Kennedy SH, Blumberger DM, Daskalakis ZJ, Downar J, Modirrousta M, Patry S, Vila-Rodriguez F, Lam RW, MacQueen GM, Parikh SV, Ravindran AV, Group CDW (2016) Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: Section 4. Neurostimulation treatments. Can J Psychiatry 61(9):561–575

    CrossRef  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34(1):13–25

    CAS  PubMed  CrossRef  Google Scholar 

  • Newton RA, Phipps SL, Flanigan TP, Newberry NR, Carey JE, Kumar C, McDonald B, Chen C, Elliott JM (1996) Characterisation of human 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptors expressed in the human neuroblastoma cell line SH-SY5Y: comparative stimulation by hallucinogenic drugs. J Neurochem 67(6):2521–2531

    CAS  PubMed  CrossRef  Google Scholar 

  • Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012) Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 36(4):1140–1152

    PubMed  CrossRef  Google Scholar 

  • Pare CM, Mack JW (1971) Differentiation of two genetically specific types of depression by the response to antidepressant drugs. J Med Genet 8(3):306–309

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Perez V, Gilaberte I, Faries D, Alvarez E, Artigas F (1997) Randomised, double-blind, placebo-controlled trial of pindolol in combination with fluoxetine antidepressant treatment. Lancet 349(9065):1594–1597

    CAS  PubMed  CrossRef  Google Scholar 

  • Picard RW (2002) Affective medicine: technology with emotional intelligence. Stud Health Technol Inform 80:69–83

    PubMed  Google Scholar 

  • Porcelli S, Drago A, Fabbri C, Gibiino S, Calati R, Serretti A (2011) Pharmacogenetics of antidepressant response. J Psychiatry Neurosci 36(2):87–113

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Powell TR, Smith RG, Hackinger S, Schalkwyk LC, Uher R, McGuffin P, Mill J, Tansey KE (2013) DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl Psychiatry 3:e300

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Relling MV, Klein TE (2011) CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther 89(3):464–467

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rosenblat JD, Kakar R, McIntyre RS (2015) The cognitive effects of antidepressants in major depressive disorder: a systematic review and meta-analysis of randomized clinical trials. Int J Neuropsychopharmacol 19(2)

    PubMed Central  CrossRef  CAS  Google Scholar 

  • Rosenblat JD, Lee Y, McIntyre RS (2017) Does pharmacogenomic testing improve clinical outcomes for major depressive disorder? A systematic review of clinical trials and cost-effectiveness studies. J Clin Psychiatry 78(6):720–729

    PubMed  CrossRef  Google Scholar 

  • Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163(11):1905–1917

    PubMed  CrossRef  Google Scholar 

  • Salagre E, Dodd S, Aedo A, Rosa A, Amoretti S, Pinzon J, Reinares M, Berk M, Kapczinski FP, Vieta E, Grande I (2018) Toward precision psychiatry in bipolar disorder: staging 2.0. Front Psychiatry 9: 641

    Google Scholar 

  • Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Selb M, Kohler F, Robinson Nicol MM, Riberto M, Stucki G, Kennedy C, Ustun B (2015) ICD-11: a comprehensive picture of health, an update on the ICD-ICF joint use initiative. J Rehabil Med 47(1):2–8

    PubMed  CrossRef  Google Scholar 

  • Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64(6):527–532

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sheline YI, Price JL, Yan Z, Mintun MA (2010) Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA 107(24):11020–11025

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Silbersweig D, Loscalzo J (2017) Precision psychiatry meets network medicine: network psychiatry. JAMA Psychiatry 74(7):665–666

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Slattery DA, Hudson AL, Nutt DJ (2004) Invited review: the evolution of antidepressant mechanisms. Fundam Clin Pharmacol 18(1):1–21

    CAS  PubMed  CrossRef  Google Scholar 

  • Stein DJ, Reed GM (2019) Global mental health and psychiatric nosology: DSM-5, ICD-11, and RDoC. Braz J Psychiatry 41(1):2

    PubMed  CrossRef  Google Scholar 

  • Sullivan PF, Neale MC, Kendler KS (2000) Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 157(10):1552–1562

    CAS  PubMed  CrossRef  Google Scholar 

  • Thaler KJ, Morgan LC, Van Noord M, Gaynes BN, Hansen RA, Lux LJ, Krebs EE, Lohr KN, Gartlehner G (2012) Comparative effectiveness of second-generation antidepressants for accompanying anxiety, insomnia, and pain in depressed patients: a systematic review. Depress Anxiety 29(6):495–505

    CAS  PubMed  CrossRef  Google Scholar 

  • Treadway MT, Zald DH (2011) Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev 35(3):537–555

    PubMed  CrossRef  Google Scholar 

  • Trivedi MH (2016) Right patient, right treatment, right time: biosignatures and precision medicine in depression. World Psychiatry 15(3):237–238

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Uher R, Payne JL, Pavlova B, Perlis RH (2014) Major depressive disorder in DSM-5: implications for clinical practice and research of changes from DSM-IV. Depress Anxiety 31(6):459–471

    PubMed  CrossRef  Google Scholar 

  • Uher R, Perroud N, Ng MY, Hauser J, Henigsberg N, Maier W, Mors O, Placentino A, Rietschel M, Souery D, Zagar T, Czerski PM, Jerman B, Larsen ER, Schulze TG, Zobel A, Cohen-Woods S, Pirlo K, Butler AW, Muglia P, Barnes MR, Lathrop M, Farmer A, Breen G, Aitchison KJ, Craig I, Lewis CM, McGuffin P (2010) Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am J Psychiatry 167(5):555–564

    PubMed  CrossRef  Google Scholar 

  • US APAD-TFAV (2013) Diagnostic and statistical manual of mental disorders: DSM-5™, vol 25, no 2, 5th edn. Codas, p 191

    Google Scholar 

  • Wijkstra J, Lijmer J, Burger H, Cipriani A, Geddes J, Nolen WA (2015) Pharmacological treatment for psychotic depression. Cochrane Database Syst Rev (7):CD004044

    Google Scholar 

  • Williams LM (2016) Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 3(5):472–480

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y, Chen J, Feng G, Fang Y, Jia W, Xing Q, He L (2011) Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res 10(12):5433–5443

    PubMed  CrossRef  CAS  Google Scholar 

  • Yatham LN, Kennedy SH, O’Donovan C, Parikh SV, MacQueen G, McIntyre RS, Sharma V, Beaulieu S (2006) Canadian network for mood and anxiety treatments (CANMAT) guidelines for the management of patients with bipolar disorder: update 2007. Bipolar Disord 8(6):721–739

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang WN, Chang SH, Guo LY, Zhang KL, Wang J (2013) The neural correlates of reward-related processing in major depressive disorder: a meta-analysis of functional magnetic resonance imaging studies. J Affect Disord 151(2):531–539

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Chen or Shaohua Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chen, J., Hu, S. (2019). Individualized Treatment Strategy for Depressive Disorder. In: Fang, Y. (eds) Depressive Disorders: Mechanisms, Measurement and Management. Advances in Experimental Medicine and Biology, vol 1180. Springer, Singapore. https://doi.org/10.1007/978-981-32-9271-0_12

Download citation