Skip to main content

The Breakage Behavior of Different Types of Glazing in a Fire

  • Conference paper
The Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology (AOSFST 2018)

Included in the following conference series:

Abstract

Different from concrete and steel, window glass or glass façade breaks very easily when subjected to a compartment fire. The new vent created by the glass fallout may cause fire spread out and fresh air entrance which can markedly change the enclosure fire dynamics. Nowadays, different types of glazing, such as clear, coated, ground and multi-pane glazing, are increasingly employed in newly constructed buildings. However, very little is known about their fire risk, especially the comprehensive comparison between them is yet to be investigated. In this paper, the fire resistance comparison of different types of glazing is conducted based on the author’s very recent and ongoing experimental results. Literature works of other researchers are also presented for comparison. Additionally, fire safety design and recommendation of glass in buildings are discussed in detail. This research is proposed to provide valuable references for the fire safety performance-based design of glass façades in high-rise buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Debuyser, M., Sjöström, J., Lange, D., Honfi, D., Sonck, D., & Belis, J. (2017). Behaviour of monolithic and laminated glass exposed to radiant heating. Construction and Building Materials, 130, 212–229.

    Article  Google Scholar 

  2. Axinte, E. (2011). Glasses as engineering materials: A review. Materials and Design, 32, 1717–1732.

    Article  Google Scholar 

  3. He, Y., & Poon, L. (1988). Experimental observations and modelling of window glass breakage in building fires. Fire Safety Science, 3, 295–306.

    Google Scholar 

  4. https://zj.zjol.com.cn/news.html?id=679231.

  5. https://en.wikipedia.org/wiki/Grenfell_Tower_fire.

  6. Emmons, H. (1986). The needed fire science. In Fire Safety Science-Proceedings of the First International Symposium (pp. 33–53). IAFSS.

    Google Scholar 

  7. Keski-Rahkonen, O. (1988). Breaking of window glass close to fire. Fire and Materials, 12, 61–69.

    Article  Google Scholar 

  8. Keski-Rahkonen, O. (1991). Breaking of window glass close to fire, II: circular panes. Fire and Materials, 15, 11–16.

    Article  Google Scholar 

  9. Skelly, M. J., Roby, R. J., & Beyler, C. L. (1991). An experimental investigation of glass breakage in compartment fires. Journal of Fire Protection Engineering, 3, 25–34.

    Article  Google Scholar 

  10. Cuzzillo, B. R., & Pagni, P. J. (1998). Thermal breakage of double-pane glazing by fire. Journal of Fire Protection Engineering, 9, 1–11.

    Article  Google Scholar 

  11. Joshi, A. A., & Pagni, P. J. (1991). Users’ guide to BREAK1, the Berkeley algorithm for breaking window glass in a compartment fire. National Institute of Standards and Technology, Building and Fire Research Laboratory.

    Google Scholar 

  12. Wang, Y., Wang, Q., Shao, G., Chen, H., Su, Y., Sun, J., et al. (2014). Fracture behavior of a four-point fixed glass curtain wall under fire conditions. Fire Safety Journal, 67, 24–34.

    Article  Google Scholar 

  13. Wang, Y., Wang, Q., Sun, J., He, L., & Liew, K. M. (2014). Effects of fixing point positions on thermal response of four point-supported glass façades. Construction and Building Materials, 73, 235–246.

    Article  Google Scholar 

  14. Chow, W., Hung, W., Gao, Y., Zou, G., & Dong, H. (2007). Experimental study on smoke movement leading to glass damages in double-skinned façade. Construction and Building Materials, 21, 556–566.

    Article  Google Scholar 

  15. Chow, W., & Hung, W. (2006). Effect of cavity depth on smoke spreading of double-skin façade. Building and Environment, 41, 970–979.

    Article  Google Scholar 

  16. Shao, G., Wang, Q., Zhao, H., Wang, Y., Sun, J., & He, L. (2016). Thermal breakage of tempered glass façade with down-flowing water film under different heating rates. Fire Technology, 52, 563–580.

    Article  Google Scholar 

  17. Shao, G., Wang, Q., Zhao, H., Wang, Y., Chen, H., Su, Y., et al. (2014). Maximum temperature to withstand water film for tempered glass exposed to fire. Construction and Building Materials, 57, 15–23.

    Article  Google Scholar 

  18. Wang, Y., Wang, Q., Wen, J. X., Sun, J., & Liew, K. M. (2017). Investigation of thermal breakage and heat transfer in single, insulated and laminated glazing under fire conditions. Applied Thermal Engineering, 125, 662–672.

    Article  Google Scholar 

  19. Wang, Q., Wang, Y., Zhang, Y., Chen, H., Sun, J., & He, L. (2014). A stochastic analysis of glass crack initiation under thermal loading. Applied Thermal Engineering, 67, 447–457.

    Article  Google Scholar 

  20. Wang, Y., Wang, Q., Sun, J., He, L., & Liew, K. (2016). Thermal performance of exposed framing glass façades in fire. Materials and Structures, 49, 2961–2970.

    Article  Google Scholar 

  21. Wang, Y., Wang, Q., Su, Y., Sun, J., He, L., & Liew, K. M. (2015). Fracture behavior of framing coated glass curtain walls under fire conditions. Fire Safety Journal, 75, 45–58.

    Article  Google Scholar 

  22. Wang, Y., Wang, Q., Shao, G., Chen, H., Sun, J., He, L., et al. (2014). Experimental study on critical breaking stress of float glass under elevated temperature. Materials and Design, 60, 41–49.

    Article  Google Scholar 

  23. Joshi, A. A., & Pagni, P. J. (1994). Fire-induced thermal fields in window glass. 1. Theory. Fire Safety Journal, 22, 25–43.

    Google Scholar 

  24. Chowdhury, H., & Cortie, M. B. (2007). Thermal stresses and cracking in absorptive solar glazing. Construction and Building Materials, 21, 464–468.

    Article  Google Scholar 

  25. Harada, K., Enomoto, A., Uede, K., & Wakamatsu, T. (2000). An experimental study on glass cracking and fallout by radiant heat exposure. In Fire Safety Science—Proceedings of the Sixth International Symposium (pp. 1063–1074). IAFSS.

    Google Scholar 

  26. Zhang, Y., Wang, Q., Zhu, X., Huang, X., & Sun, J. (2011). Experimental study on crack of float glass with different thicknesses exposed to radiant heating. Procedia Engineering, 11, 710–718.

    Article  Google Scholar 

  27. Li, M., Lu, G., Hu, Z., Mei, X., Li, L., & Wang, L. (2014). Research on fire endurance of tempered glass based on infrared imaging technology. Procedia Engineering, 84, 553–557.

    Article  Google Scholar 

  28. Manzello, S. L., Gann, R. G., Kukuck, S. R., Prasad, K. R., & Jones, W. W. (2007). An experimental determination of a real fire performance of a non-load bearing glass wall assembly. Fire Technology, 43, 77–89.

    Article  Google Scholar 

  29. Wang, Y., Wang, Q., Shao, G., Chen, H., Su, Y., Sun, J., et al. (2014). Experimental study on thermal breakage of four-point fixed glass facade. In: Fire Safety Science—Proceedings of the Eleventh International Symposium (pp. 666–676). Christchurch, New Zealand: IAFSS.

    Google Scholar 

  30. Babrauskas, V. (2011). Glass breakage in fires. Fire Science and Technology, Inc. https://www.doctorfire.com/GlassBreak.pdf, 22.

  31. Shields, J., Silcock, G. W., & Flood, F. (2005). Behaviour of double glazing in corner fires. Fire Technology, 41, 37–65.

    Article  Google Scholar 

  32. Mowrer, F. W. (1998). Window breakage induced by exterior fire. Gaithersburg, MD: National Institute of Standards and Technology.

    Google Scholar 

  33. Wang, Y., Wang, Q., Su, Y., Sun, J., He, L., & Liew, K. M. (2017). Experimental study on fire response of double glazed panels in curtain walls. Fire Safety Journal, 92, 53–63.

    Article  Google Scholar 

  34. Wang, Y., Li, K., Su, Y., Lu, W., Wang, Q., Sun, J., et al. (2017). Determination of critical breakage conditions for double glazing in fire. Applied Thermal Engineering, 111, 20–29.

    Article  Google Scholar 

  35. Klassen, M. S., Sutula, J. A., Holton, M. M., Roby, R. J., & Izbicki, T. (2006). Transmission through and breakage of multi-pane glazing due to radiant exposure. Fire Technology, 42, 79–107.

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Yu Wang is supported by IRIS-Fire project of UK (Engineering and Physical Sciences Research Council Grant no.: EP/P029582/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wang, Y. (2020). The Breakage Behavior of Different Types of Glazing in a Fire. In: Wu, GY., Tsai, KC., Chow, W.K. (eds) The Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology. AOSFST 2018. Springer, Singapore. https://doi.org/10.1007/978-981-32-9139-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9139-3_40

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9138-6

  • Online ISBN: 978-981-32-9139-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics