Skip to main content

Ecology and Global Distribution Pattern of Lobsters

  • Chapter
  • First Online:
Lobsters: Biology, Fisheries and Aquaculture

Abstract

This chapter presents a comprehensive overview of the global distribution of lobsters (nephropid, palinurid and scyllarid) in all oceans. Lobsters are found in tropical, subtropical and temperate regions, from the intertidal to great depths. Many species of the genus Panulirus prefer rocky or coral reefs and some are found in sandy/muddy substrates. The tropical zone has the largest number of species (174), followed by the subtropics with 71 species and the temperate region with 16 species. Among the 63 species of palinurids, 39 are distributed in the tropics and 19 species in the subtropical zone with many species overlapping in their distribution. Under the family Nephropidae, 32 species are found in the tropical belt, 15 in the subtropical zone and 10 species in the temperate zone. Three species under two genera, Thymops and Thymopides are distributed in the southern Atlantic and Indian Ocean region (50oS). The Indo-West Pacific is the region with maximum diversity with the nephropids represented by 29 species, palinurids by 36 species and the scyllarids by 57 species. Among the total number of scyllarids, 63 species are distributed in the tropical zone, 26 in the subtropical and 3 species in the temperate region.

Rock lobsters use a range of different habitats at different phases of their life cycle from the water column during the pelagic larval phase to seagrass and algal meadows in puerulus stage and small holes in the reef in postpuerulus and juvenile stages to subadults (3–4 years of age) migrating across the deepwater regions of sand and reefs to settle on offshore, deepwater habitats as mature breeding lobsters. Many spiny lobster species exhibit ontogenetic habitat shift from the postlarval settlement habitat of macroalgae, kelp or seagrass to benthic crevices sheltering concomitant with aggregation in crevices as larger juveniles, subadults and adults. Different species of lobsters may cohabit in the same region but may differ in their habitat selection. Lobsters cohabit with many species of sponges, sea urchins, echinoderms, fishes, decapods, seagrass and seaweeds in the coastal fishing grounds. Artisanal fishing using bottom-set gillnets in the coastal grounds removes these low trophic species regularly. The indiscriminate and constant removal of these low trophic species has the potential to cause serious ecological balance of the reef system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bellchambers, L. M., Mantel, P., Chandrapavan, A., Pember, M. B., & Evans, S. E. (2012). Western rock lobster ecology – The state of knowledge marine stewardship council principle 2: Maintenance of ecosystem fisheries research report, no. 236. Perth: Department of Fisheries, Western Australia.

    Google Scholar 

  • Berry, P. F. (1971). The spiny lobster (Palinuridae) of the east coast of Southern Africa: distribution and ecological notes. Investl. Rep. No. 27 (pp. 1–23). Durban: Oceanographic Research Institute.

    Google Scholar 

  • Booth, J. D. (2006). Jasus species. In B. F. Phillips (Ed.), Lobsters: Biology, management, aquaculture and fisheries (pp. 340–358). Oxford: Blackwell.

    Chapter  Google Scholar 

  • Butler, M. J. I. V., & Herrnkind, W. F. (2000). Puerulus and juvenile ecology. In B. F. Phillips, J. S. Cobb, & J. Kittaka (Eds.), Spiny lobster management (pp. 276–301). Oxford: Blackwell Publishing.

    Chapter  Google Scholar 

  • Butler, M. J. I. V., Steneck, R. S., & Herrnkind, W. F. (2006). Juvenile and adult ecology. In B. F. Phillips (Ed.), Lobsters: Biology and management (pp. 263–309). Oxford: Blackwell Publishing.

    Google Scholar 

  • Campbell, A., Noakes, D. J., & Elner, R. W. (1991). Temperature and lobster Homarus americanus, yield relationships. Canadian Journal of Fisheries and Aquatic Sciences, 48, 2073–2082.

    Article  Google Scholar 

  • Childress, M. J., & Herrnkind, W. F. (1994). The behavior of juvenile Caribbean spiny lobster in florida bay: seasonality, ontogeny and sociality. Bulletin of Marine Science, 54(3), 819–827.

    Google Scholar 

  • Childress, M. J., & Herrnkind, W. F. (2002). Influence of conspecifics on the ontogenetic habitat shift of juvenile Caribbean spiny lobsters. Marine and Freshwater Research, 52(8), 1077–1084.

    Article  Google Scholar 

  • Childress, M. J., & Jury, S. H. (2006). Behaviour. In B. F. Phillips (Ed.), Lobsters: Biology, management, aquaculture and fisheries (pp. 78–112). Oxford: Blackwell Publishing.

    Chapter  Google Scholar 

  • Cooper, R. A., & Usmann, J. R. (1980). Ecology of juvenile and adult Homarus. In J. S. Cobb & B. F. Phillips (Eds.), The biology and Management of Lobsters. Vol.!!. Ecology and management (pp. 97–139). New York: Academic Press.

    Google Scholar 

  • Cobb, J. S., & Phillips, B. F. (1980). Preface. In J. S. Cobb & B. F. Phillips (Eds.), The biology and management of lobsters (Vol. 1, pp. xi–xiii). New York: Academic Press.

    Chapter  Google Scholar 

  • Dow, R. L. (1977). Relationship of sea surface temperature to American and European lobster landings. ICES Journal of Marine Science, 37(2), 186–191.

    Article  Google Scholar 

  • Edgar, G. J. (1990). Predator-prey interactions in seagrass beds: The influence of macro-faunal abundance and size structure on the diet and growth of the western rock lobster Panulirus cygnus George. Journal of Experimental Marine Biology and Ecology, 139, 122.

    Google Scholar 

  • Eggleston, D. B., & Lipcius, R. N. (1992). Shelter selection by spiny lobster under variable predation risk, social conditions, and shelter size. Ecology, 73, 992–1011.

    Article  Google Scholar 

  • Faulkes, Z. (2006). Digging mechanisms and substrate preferences of shovel nosed lobsters Ibacus peronii (Decapoda: Scyllaridae). Journal of Crustacean Biology, 26, 69–72.

    Article  Google Scholar 

  • Field, J. M., & Butler, M. J., IV. (1994). The influence of temperature, salinity, and postlarval transport on the distribution of juvenile spiny lobsters, Panulirus argus (Latreille, 1804) in Florida Bay. Crustaceana, 67, 26–45.

    Article  Google Scholar 

  • Fogarty, M. J. (1986). Population dynamics of the American lobster Homarus americanus (Ph D dissertation), University of Rhode Island, Kingston.

    Google Scholar 

  • Galparsoro, I., Borja, A., Bald, J., Liria, P., & Chust, G. (2009). Predicting suitable habitat for the European lobster (Homarus gammarus), on the Basque continental shelf (Bay of Biscay), using Ecological-Niche Factor Analysis. Ecological Modelling, 220, 556–567.

    Article  Google Scholar 

  • George, R. W., & Main, A. R. (1967). The evolution of spiny lobsters (Palinuridae): A study of evolution in the marine environment. Evolution, 21, 803–820.

    Article  CAS  PubMed  Google Scholar 

  • Giraldes, B. W., Zacaron Silva, A., Corrêa, F. M., & Smyt, D. M. (2015). Artisanal fishing of spiny lobsters with gillnets — A significant anthropic impact on tropical reef ecosystem. Global Ecology and Conservation, 4, 572–580.

    Article  Google Scholar 

  • Griffiths, C. L., & Seiderer, J. L. (1980). Rock-lobsters and mussels -limitations and preferences in a predator-prey interaction. Journal of Experimental Marine Biology and Ecology, 44, 95–109.

    Article  Google Scholar 

  • Groeneveld, J. C., Von der Heyden, S., & Matthee, C. A. (2012). High connectivity and lack of mtDNA differentiation among two previously recognized spiny lobster species in the southern Atlantic and Indian Oceans. Marine Biology Research, 8(8), 764–770. https://doi.org/10.1080/17451000.2012.676185.

    Article  Google Scholar 

  • Guenther, C. M., Lenihan, H. S., Grant, L. E., Lopez-Carr, D., & Reed, D. C. (2012). Trophic Cascades Induced by Lobster Fishing Are Not Ubiquitous in Southern California Kelp Forests. PLoS One, 7(11), e49396. https://doi.org/10.1371/journal.pone.0049396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrnkind, W. F. (1980). Spiny lobsters: Patterns of movement. In J. S. Cobb & B. F. Phillips (Eds.), The biology and management of lobsters (Vol. II, pp. 349–401). New York: Academic Press.

    Chapter  Google Scholar 

  • Herrnkind, W. F., & Butler, M. J., IV. (1986). Factors regulating postlarval settlement and juvenile microhabitat use by spiny lobsters Panulirus argus. Marine Ecology Progress Series, 34, 23–30.

    Article  Google Scholar 

  • Holthuis, L. B. (1991). Marine lobsters of the World. FAO species catalogue (FAO Fisheries Synopsis) (Vol. 13). Rome: Food and Agriculture Organization. 125 (13): 1–292.

    Google Scholar 

  • Holthuis, L. B. (2002). The Indo-Pacific scyllarinae lobsters (Crustacea, Decapoda, Scyllaridae). Zoosystema, 24(3), 499–683.

    Google Scholar 

  • Howard, A. E., & Bennett, D. B. (1979). The substrate preference and burrowing behaviour of juvenile lobsters (Homarus gammarus (L.)). Journal of Natural History, 13(4), 433–438.

    Article  Google Scholar 

  • Joll, L. M., & Phillips, B. F. (1984). Natural diet and growth of juvenile western rock lobsters Panulirus cygnus George. Journal of Experimental Marine Biology and Ecology, 7(5), 145–169.

    Article  Google Scholar 

  • Jones, C. M. (1988). The Biology and Behaviour of Bay lobsters, Thenus spp. (Decapoda: Scyllaridae) in Northern Queensland, Australia. PhD. Dissertation (p. 190). Bisbane: University of Queensland.

    Google Scholar 

  • Jones, C. M. (1993). Population structure of two species of Thenus (Decapoda: Scyllaridae) in northeastern Australia. Marine Ecology Progress Series, 97, 143–155.

    Article  Google Scholar 

  • Lavalli, K. L., & Spanier, E. (2007). Introduction to the biology and fisheries of slipper lobsters. In K. L. Lavalli & E. Spanier (Eds.), The biology and fisheries of the slipper lobster. New York: CRC Press, Taylor & Francis Group.

    Chapter  Google Scholar 

  • Lavalli, K. L., Spanier, E., & Grasso, F. (2007). Behavior and sensory biology of slipper lobsters. In K. L. Lavalli & E. Spanier (Eds.), The biology and fisheries of slipper lobsters (Crustacean issues) (Vol. 17, pp. 133–181). New York: CRC Press (Taylor & Francis Group).

    Chapter  Google Scholar 

  • Lawton, P., & Lavalli, K. L. (1995). Postlarval, juvenile, and adult ecology. In J. R. Factor (Ed.), Biology of the lobster, Homarus americanus (pp. 47–88). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Levin, S. A. (1999). Fragile dominion. Complexity and the commons. Cambridge: Perseus Books Group.

    Google Scholar 

  • Ling, S. D., Johnson, C. R., Frusher, S. D., & Ridgway, K. R. (2009). Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. www.pnas.org. https://doi.org/10.1073pnas.0907529106

  • MacDiarmid, A. B. (1994). Cohabitation in the spiny lobster Jasus edwardsii (Hutton, 1875). Crustaceana, 66, 341–355.

    Article  Google Scholar 

  • MacDiarmid, A. B., & Booth, J. (2003). Crayfish. In N. Andrew & M. Francis (Eds.), The living reef. The ecology of New Zealand’s rocky reefs (pp. 120–127). Nelson: Craig Potton Publishing.

    Google Scholar 

  • Marx, J. M., & Herrnkind, W. F. (1985). Factors regulating microhabitat use by young juvenile spiny lobsters, Panulirus argus: food and shelter. Journal of Crustacean Biology, 5, 650–657.

    Article  Google Scholar 

  • Mayfield, S., & Branch, G. M. (2000). Interrelations among rock lobsters, sea urchins, and juvenile abalone: implications for community management. Canadian Journal of Fisheries and Aquatic Sciences, 57, 2175–2185.

    Article  Google Scholar 

  • Menge, B. A., Lubchenco, J., Bracken, M. E. S., Chan, F., Foley, M. M., et al. (2003). Coastal oceanography sets. the pace of rocky intertidal community dynamics. Proceedings of the National Academy of Sciences of the United States of America, 100, 12229–12234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mintz, J. D., Lipcius, R. N., Eggleston, D. B., & Seebo, M. S. (1994). Survival of juvenile Caribbean spiny lobster: effects of shelter size, geographic location and conspecific abundance. Marine Ecology Progress Series, 112, 255–266.

    Article  Google Scholar 

  • Partelow, S. (2014). Assessing sustainability in lobster fisheries as social-ecological systems: A framework and research protocol. Lund: Lund University.

    Google Scholar 

  • Phillips, B. F., & Kittaka, J. (2000). Preface. In B. F. Phillips & J. Kittaka (Eds.), Spiny lobsters: Fisheries and culture (2nd ed.). New York: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Phillips, B. F., Wahle, R. A., & Ward, T. J. (2013). Lobsters as part of marine ecosystems – A review. In B. F. Phillips (Ed.), Lobsters: Biology, management, aquaculture and fisheries (2nd ed.). New York: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Pitcher, R. (1993). Spiny lobster. In A. Wright & L. Hill (Eds.), Nearshore marine resources of the South Pacific (pp. 539–608). Suva: Institute of Pacific Studies, Honiara: Forum Fisheries Agency and Halifax: International Centre for Ocean Development.

    Google Scholar 

  • Pottle, R. A., & Elner, R. W. (1982). Substrate preference behavior of juvenile American lobsters, Homarus americanus, in gravel and silt–clay sediments. Canadian Journal of Fisheries and Aquatic Sciences, 39(6), 928–932.

    Article  Google Scholar 

  • Reed, D. C., Rassweiler, A., Carr, M. H., Cavanaugh, K. C., Malone, D. P., et al. (2011). Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests. Ecology, 92, 2108–2116.

    Article  PubMed  Google Scholar 

  • Rios-Lara, V., Salas, S., Bello-Pineda, J., & Irene-Ayora, P. (2007). Distribution patterns of spiny lobster (Panulirus argus) at Alacranes reef, Yucatan: Spatial analysis and inference of preferential habitat. Fisheries Research, 87, 35–45.

    Article  Google Scholar 

  • Robles, C. (1987). Predator foraging characteristics and prey population structure on a sheltered shore. Ecology, 68, 1502–1514.

    Article  Google Scholar 

  • Shears, N. T., & Babcock, R. C. (2002). Marine reserves demonstrate top-down control of community structure on temperate reefs. Oecologia, 132, 131–142.

    Article  PubMed  Google Scholar 

  • Snover, M. L. (2008). Ontogenetic habitat shifts in marine organisms: influencing factors and the impact of climate variability. Bulletin of Marine Science, 83(1), 1–15.

    Google Scholar 

  • Tegner, M. J., & Dayton, P. K. (1981). Population structure, recruitment, and mortality of two sea urchins (Strongylocentrotus fransciscanus and S. purpuratus) in a kelp forest near San Diego, California. Marine Ecology Progress Series, 77, 49–63.

    Article  Google Scholar 

  • Tegner, M. J., & Levin, L. A. (1983). Spiny lobsters and sea urchins: Analysis of a predator-prey interaction. Journal of Experimental Marine Biology and Ecology, 73, 125–150.

    Article  Google Scholar 

  • Thangaraja, R., & Radhakrishnan, E. V. (2012). Fishery and ecology of the spiny lobster Panulirus homarus (Linnaeus, 1758) at Khadiapatanam in the southwest coast of India. Journal of the Marine Biological Association, 54(2), 69–79.

    Google Scholar 

  • Wahle, R. A., & Steneck, R. S. (1992). Habitat restrictions in early benthic life: experiments on habitat selection and in situ predation with the American lobster. Journal of Experimental Marine Biology and Ecology, 157(1), 91–114.

    Article  Google Scholar 

  • Webber, W. R., & Booth, J. D. (2007). Taxonomy and evolution. In K. L. Lavalli & E. Spanier (Eds.), The biology and fisheries of the slipper lobster (pp. 25–52). Boca Raton: Taylor & Francis/CRC Press.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Radhakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radhakrishnan, E.V., Phillips, B.F., S, L.P., Padua, S. (2019). Ecology and Global Distribution Pattern of Lobsters. In: Radhakrishnan, E., Phillips, B., Achamveetil, G. (eds) Lobsters: Biology, Fisheries and Aquaculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9094-5_5

Download citation

Publish with us

Policies and ethics