Skip to main content

Microbes-Mediated Nutrient Use Efficiency in Pulse Crops

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Legumes are the major crops used in crop rotation practices to maintain soil fertility. Soil fertility is maintained mainly by microorganisms associated with roots either symbiotically or asymbiotically. Microbes have capability to fix atmospheric nitrogen (N2) and enhance nutrient use efficiency by using a number of strategies like phosphate solubilization, potassium solubilization, mineral absorption, etc. Currently, use of microbial consortium (symbiotic as well as free-living) to increase nutrition use efficiency and activation of defense systems of plants is gaining importance. Microorganisms are eco-friendly, and their use is one of the best alternates of chemical fertilizers and pesticides. Additionally, efforts are also being made to develop transgenic plants for increasing nutrient use efficiency. These transgenes are mostly of microbial origin. The present review focuses on enhancement of nutrient use efficiency of plants by using either individual microbe or microbes in consortium mode. The review also discusses the strategies adopted by microbes to enhance use of nutrients from soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Khair H, Khalifa RKM, Haggag KHE (2010) Effect of Trichoderma species on damping off diseases incidence, some plant enzymes activity and nutritional status of bean plants. J Am Sci 6(9):486–497

    Google Scholar 

  • Acharya S, Bera S, Gupta K, Basumatary S, Bera S, Ahmed M (2012) Bamboo cultivation in Garo Hills of Meghalaya, North East India: a potential agroforestry system to protect environment. Biol Sci Eng 3:195

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2007) Effects of Glomus fasciculatum and Rhizobium sp. on the growth and root-rot disease complex of chickpea. Arch Phytopathol Plant Protect 40:37–43

    Article  Google Scholar 

  • Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Argaw A (2012) Evaluation of co-inoculation of Bradyrhizobium japonicum and phosphate solubilizing Pseudomonas spp. effect on soybean (Glycine max L. (Merr.)) in Assossa area. J Agric Sci Technol 14:213–224

    CAS  Google Scholar 

  • Badar R, Qureshi SA (2012) Comparative effect of Trichoderma hamatum and host-specific Rhizobium species on growth of Vigna mungo. J Appl Pharm Sci 02(04):128–132

    Article  Google Scholar 

  • Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from co-inoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bambara S, Ndakidemi PA (2010) Changes in selected soil chemical properties in the rhizosphere of Phaseolus vulgaris L. supplied with Rhizobium inoculants, molybdenum and lime. Sci Res Essays 5:679–684

    Google Scholar 

  • Bardas GA, Lagopodi AL, Kadoglidou K, Tzavella-Klonari K (2009) Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Biol Control 2:139–145

    Article  Google Scholar 

  • Biró B, Köves-Péchy K, Vörös I, Takács T, Eggenberger P, Strasser RJ (2000) Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Appl Soil Ecol 15(2):159–168

    Article  Google Scholar 

  • Burns TA Jr, Bishop PE, Israel DW (1981) Enhanced nodulation of leguminous plant roots by mixed cultures of Azotobacter vinelandi and damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    Google Scholar 

  • Chandra SN, Puneet SC, Sangeeta MD, Karishma S, Ajit V, William JS (2010) Tripartite interactions among Paenibacillus lentimorbus NRRL B-30488, Piriformospora indica DSM 11827, and Cicer arietinum L. World J Microbiol Biotechnol 26:1393–1399

    Article  CAS  Google Scholar 

  • Chanway CP, Hynes RK, Nelson LM (1989) Plant growth promoting rhizobacteria: effects on growth and nitrogen fixation of lentil (Lens esculenta Moench) and pea (Pisum sativum L.). Soil Biol Biochem 21:511–517

    Article  Google Scholar 

  • Courty PE, Smith P, Koegel S, Redecker D, Wipf D (2015) Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. Crit Rev Plant Sci 34(1–3):4–16

    Article  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dorosinsky LM, Kadyrob AA (1975) Effect of inoculation of nitrogen fixation by chickpea, its crop and content of protein. Mikrobiologiia 44:1103–1106

    Google Scholar 

  • Egamberdieva D, Jabborova D, Wirth S (2013) Alleviation of salt stress in legumes by co-inoculation with Pseudomonas and Rhizobium. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer India, New Delhi, pp 291–303

    Chapter  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2010) Food and agriculture organization of the United Nations

    Google Scholar 

  • Farzaneh M, Wichmann S, Vierheilig H, Kaul HP (2009) The effects of arbuscular mycorrhiza and nitrogen nutrition on growth of chickpea and barley. Pflanzenbauwissenschaften 13:15–22

    Google Scholar 

  • Farzaneh M, Vierheilig H, Lössl A, Kaul HP (2011) Arbuscular mycorrhiza enhances nutrient uptake in chickpea. Plant Soil Environ 57(10):465–470

    Article  CAS  Google Scholar 

  • Fattah OA (2013) Effect of mycorrhiza and phosphorus on micronutrients uptake by soybean plant grown in acid soil. Int J Agron Plant Prod 4(3):429–437

    Google Scholar 

  • Geetha R, Sing FJ, Desai A, Archana G (2008) Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550

    Article  CAS  Google Scholar 

  • Gourley CJP, Allan DL, Russelle MP (1994) Plant nutrient efficiency: a comparison of definitions and suggested improvements. Plant Soil 158:29–37

    Article  CAS  Google Scholar 

  • Graham P, Ranalli P (1997) Common bean (Phaseolus vulgaris L.). Field Crop Res 53:131–146

    Article  Google Scholar 

  • Gruodien J, Zvironaite V (1971) Effect of IAA on growth and synthesis of N compounds in Lucerne. Luk TSR Aukstuja Mosklo Darbai Biologia 17:77–87

    Google Scholar 

  • Guo H, He X, Li Y (2012) Spatial distribution of arbuscular mycorrhiza and glomalin in the rhizosphere of Caragana korshinskii Kom in the Otindag sandy land, China. Afr J Microbiol Res 6:5745–5753

    CAS  Google Scholar 

  • Halder M, Dhar PP, Mujib ASM, Khan MS, Joardar JC, Akhter S (2015) Effect of arbuscular mycorrhiza fungi inoculation on growth and uptake of mineral nutrition in Ipomoea aquatica. Curr World Environ 10(1):67–75

    Article  Google Scholar 

  • Kan FL, Chen ZY, Wang ET, Tian CF, Sui XH, Chen WX (2007) Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai-Tibet plateau and in other zones of China. Arch Microbiol 188:103–115

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27(1):29–43

    Article  Google Scholar 

  • Kumar M, Singh DP, Prabha R, Sharma AK (2015) Role of cyanobacteria in nutrient cycle and use efficiency in the soil. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer India, New Delhi, pp 163–171

    Chapter  Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319

    Article  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehetre ST, Mukherjee PK (2015) Trichoderma improves nutrient use efficiency in crop plants. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer India, New Delhi, pp 173–180

    Chapter  Google Scholar 

  • Meshram S, Patel JS, Yadav SK, Kumar G, Singh DP, Singh HB, Sarma BK (2019) Trichoderma mediate early and enhanced lignifications in chickpea during Fusarium oxysporum f. sp. ciceris infection. J Basic Microbiol 59(1):74–86

    Article  CAS  PubMed  Google Scholar 

  • Mia MB, Shamsuddin Z (2013) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9:6001–6009

    Google Scholar 

  • Miller RM, Jastrow JD (1994) Vesicular arbuscular mycorrhizae and biogeochemical cycling. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, The American Phytopathological Society, St. Paul, pp 189–212

    Google Scholar 

  • Mmbaga GW, Mtei KM, Ndakidemi PA (2014) Extrapolations on the use of Rhizobium inoculants supplemented with phosphorus (P) and potassium (K) on growth and nutrition of legumes. Agric Sci 5:1207–1226

    Google Scholar 

  • Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. J Agric Biol Sci 7:307–316

    Google Scholar 

  • Pandey PK, Yadav SK, Singh A, Sarma BK, Mishra A, Singh HB (2012) Cross-species alleviation of biotic and abiotic stresses by the endophyte Pseudomonas aeruginosa PW09. J Phytopathol 160(10):532–539

    Article  Google Scholar 

  • Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–64

    Article  CAS  Google Scholar 

  • Patel JS, Singh A, Singh HB, Sarma BK (2015) Plant genotype, microbial recruitment and nutritional security. Front Plant Sci 6:608

    Article  PubMed  PubMed Central  Google Scholar 

  • Peix A, Ramirez-Bahena MH, Velazquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34(1–3):17–42

    Article  Google Scholar 

  • Qureshi MA, Shakir MA, Naveed M, Ahmad MJ (2009) Growth and yield response of chickpea to co-inoculation with Mesorhizobium ciceri and Bacillus megaterium. J Anim Plant Sci 19(4):205–211

    Google Scholar 

  • Rees DC, Akif Tezcan F, Haynes CA, Walton MY, Andrade S, Einsle O, Howard JB (2005) Structural basis of biological nitrogen fixation. Philos Transact A Math Phys Eng Sci 363:971–984

    Article  CAS  Google Scholar 

  • Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7(1):89–123

    Article  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339

    Article  CAS  Google Scholar 

  • Rokhzadi A, Asgharzadeh A, Darvish F, Nour-Mohammadi G, Majidi E (2008) Influence of plant growth-promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field conditions. Am Eurasian J Agric Environ Sci 3(2):253–257

    Google Scholar 

  • Rubiales D, Mikic A (2015) Introduction: legumes in sustainable agriculture. Crit Rev Plant Sci 34(1–3):2–3

    Article  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl Soil Ecol 28(2):139–146

    Article  Google Scholar 

  • Sandeep AR, Joseph S, Jisha MS (2008) Yield and nutrient uptake of soybean (Glycine max (L.) Merr) as influenced by phosphate solubilizing microorganisms. World J Agric Sci 4:835–838

    Google Scholar 

  • Sarkar A, Patel JS, Yadav S, Sarma BK, Srivastava JS, Singh HB (2014) Studies on rhizosphere-bacteria mediated biotic and abiotic stress tolerance in chickpea (Cicer arietinum L.). Vegetos 27(1):158–169

    Google Scholar 

  • Sarma BK, Singh DP, Mehta S, Singh HB, Singh UP (2002) Plant growth-promoting rhizobacteria-elicited alterations in phenolic profile of chickpea (Cicer arietinum) infected by Sclerotium rolfsii. J Phytopathol 150:277–282

    Article  CAS  Google Scholar 

  • Sarma BK, Yadav SK, Singh DP, Singh HB (2012) Rhizobacteria mediated induced systemic tolerance in plants: prospects for abiotic stress management. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 225–238

    Chapter  Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    Article  CAS  Google Scholar 

  • Shakeri J, Foster HA (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzym Microb Technol 40(4):961–968

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2(1):587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma N, Yadav K, Aggarwal A (2016) Growth response of two Phaseolus mungo L. cultivars induced by arbuscular mycorrhizal fungi and Trichoderma viride. Int J Agron 2016:1–6

    Article  CAS  Google Scholar 

  • Shen J, Li C, Mi G, Li L, Yuan L, Jiang R, Zhang F (2012) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64(5):1181–1192

    Article  PubMed  CAS  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh V, Upadhyay RS, Sarma BK, Singh HB (2016a) Seed bio-priming with Trichoderma asperellum effectively modulate plant growth promotion in pea. Int J Agric Environ Biotechnol 9(3):361–365

    Article  Google Scholar 

  • Singh V, Upadhyay RS, Sarma BK, Singh HB (2016b) Trichoderma asperellum spore dose depended modulation of plant growth in vegetable crops. Microbiol Res 193:74–86

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Snoeijers SS, Garcia AP, Joosten MHAJ, De Wit PJGM (2000) The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogen. Eur J Plant Pathol 106:493–506

    Article  CAS  Google Scholar 

  • Srinivasan PS, Gopal KS (1977) Effect of plantofix and NAA formulation on groundnut var TMU-7. Curr Sci 46:119–120

    CAS  Google Scholar 

  • Suranjana AR, Manas KR (2009) Bioremediation of heavy metal toxicity-with special reference to chromium. Al Ameen J Med Sci 2:57–63

    Google Scholar 

  • Tagore GS, Namdeo SL, Sharma SK, Kumar N (2013) Effect of Rhizobium and phosphate solubilizing bacterial inoculants on symbiotic traits, nodule leghemoglobin, and yield of chickpea genotypes. Int J Agron 2013:1–8

    Article  CAS  Google Scholar 

  • Tairo EV, Ndakidemi PA (2013) Possible benefits of rhizobial inoculation and phosphorus supplementation on nutrition, growth and economic sustainability in grain legumes. Am J Res Commun 1(12):532–556

    Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones: roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265

    Article  CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur J Soil Sci 57(1):67–71

    Article  CAS  Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    Article  CAS  Google Scholar 

  • Vadassery J, Oelmüller R (2009) Calcium signaling in pathogenic and beneficial plant microbe interactions. Plant Signal Behav 4:1024–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez P, Holguin G, Puente M, Lopez-cortes A, Bashan Y (2000) Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi-arid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Venkateswarlu B, Rao AV, Raina P, Ahmad N (1984) Evaluation of phosphorus solubilization by microorganisms isolated from arid soil. J Indian Soc Soil Sci 32:273–277

    CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN (2010) Application of Rhizobium sp. BHURC01 and plant growth promoting rhizobacteria on nodulation, plant biomass and yields of chickpea (Cicer arietinum L.). Int J Agric Res 5:148–156

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • Yadav A, Aggarwal A (2014) Effect of dual inoculation of AM fungi and pseudomonas with phosphorus fertilizer rates on growth performance, nutrient uptake and yield of soybean. Researcher 6:5–13

    Google Scholar 

  • Yadav SK, Dave A, Sarkar A, Singh HB, Sarma BK (2013) Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int J Agric Environ Biotechnol 6(2):255–259

    Google Scholar 

  • Yadav SK, Singh S, Singh HB, Sarma BK (2017) Compatible rhizosphere-competent microbial consortium adds value to the nutritional quality in edible parts of chickpea. J Agric Food Chem 65(30):6122–6130

    Article  CAS  PubMed  Google Scholar 

  • Yahalom E, Okon Y, Dovrat A (1988) Early nodulation in legumes inoculated with Azospirillum and Rhizobium. Symbiosis 6:69–80

    Google Scholar 

  • Yan YL, Yang J, Dou YT, Chen M, Ping SZ, Peng JP, Lu W, Zhang W, Yao ZY, Li HQ, Liu W, He S, Geng LZ, Zhang XB, Yang F, Yu HY, Zhan YH, Li DH, Lin ZL, Wang YP, Elmerich C, Lin M, Jin Q (2010) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 21:7564–7569

    Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Yaseen T, Burni T, Hussain F (2011) Effect of arbuscular mycorrhizal inoculation on nutrient uptake, growth and productivity of cowpea (Vigna unguiculata) varieties. Afr J Biotechnol 10(43):8593–8598

    Article  Google Scholar 

  • Yuming B, Xiaomin Z, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1778

    Article  Google Scholar 

  • Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, De Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51:375–393

    Article  PubMed  Google Scholar 

  • Zhao LF, Xu YJ, Ma ZQ, Deng ZS, Shan CJ, Wei GH (2013) Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 44(2):623–631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

SKY is grateful to the Indian Council of Medical Research, New Delhi, India, for financial assistance [Grant 3/1/3/JRF-2012/HRD-66(80689)] as the work is related to Ph.D. RP is thankful to DST for financial support under DST-Women Scientist Scheme-B (KIRAN Program) (Grant No. DST/WOS-B/2017/67-AAS).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, S.K. et al. (2019). Microbes-Mediated Nutrient Use Efficiency in Pulse Crops. In: Singh, D., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-32-9084-6_20

Download citation

Publish with us

Policies and ethics