Skip to main content

Influence of Endophytic Bacteria on Growth Promotion and Protection against Diseases in Associated Plants

  • Chapter
  • First Online:

Abstract

Plants are colonized by different endophytic microbial communities. These endophytic microbiomes have been reportedly associated with improved growth, metabolism and defence against other physical factors. The endophytic population varies with plant species, genotypes and crop growth stages. They contribute plant growth promotion through nitrogen (N) fixation, phosphate solubilization and phytohormone production. Several phytohormones, such as indole-3-acetic acid (IAA), gibberellins (GA) and cytokinins (CK), synthesized by the plant endophytes can enhance different stages of plant growth, such as root formation, stimulation of cell division, extension, differentiation and regulation of fruit ripening. The low-molecular-weight siderophore molecules produced by these endophytes show high affinity for ferrous iron. Endophytes aid in the host’s survival against biotic stress by the production of HCN and secondary metabolites that suppress the soilborne pathogens. They also enhance plant fitness by producing novel bioactive compounds. Different kinds of alkaloids produced by the endophytes also provide resistance to plants against environmental stresses. The amines and amides produced by the plant endophytes have shown toxic effects to insects. The endophytic bacteria can trigger strawberry flavour. Advanced techniques, such as metagenomics based on next-generation sequencing is useful to study the taxonomical diversity of microbial communities associated with the economically and agriculturally important crops. This chapter reviews the important role of plant-associated bacterial endophytes in agricultural crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113(5):1139–1144

    Article  CAS  PubMed  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Article  PubMed  Google Scholar 

  • Annapurna K, Ramadoss D, Bose P, VithalKumar L (2013) In situ localization of Paenibacillus polymyxa HKA-15 in roots and root nodules of soybean (Glycine max.L.). Plant Soil 373:641–648

    Article  CAS  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Araujo WL, Lacava PT, Andreote FD, Azevedo JL (2008) Interaction between endophytes and plant host: biotechnological aspects. Mol Plant-Microbe Interact:95–115

    Google Scholar 

  • Aravind R, Kumar A, Eapen SJ, Ramana KV (2009) Endophytic bacterial flora ini root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 48:58–64

    Article  CAS  PubMed  Google Scholar 

  • Arsac JF, Lamothe C, Mulard D, Fages J (1990) Growth enhancement of maize (Zea mays L) through Azospirillum lipoferum inoculation: effect of plant genotype and bacterial concentration. Agronomie 10(8):649–654

    Article  Google Scholar 

  • Bacon CW, White J (eds) (2000) Microbial endophytes. Marcel Deker, New York, p 487

    Google Scholar 

  • Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48(3):230–238

    Article  CAS  PubMed  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol Biochem 19(4):451–457

    Article  CAS  Google Scholar 

  • Baldani J, Caruso L, Baldani VL, Goi SR, Dobereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29(5):911–922

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Romheld V, Marschner H (1992) Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol 100(1):451–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194(1–2):15–24

    Article  CAS  Google Scholar 

  • Bastian F, Cohen A, Piccoli P, Luna V, Bottini R, Baraldi R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24(1):7–11

    Article  CAS  Google Scholar 

  • Beijerinck MW, Van Delden A (1902) Ueber die Assimilation des freien Stickstoffs durch Bakterien. Central blatt fur Bakteriologie Parasitenkunde und Infektionskrankheiten 9:3–43

    CAS  Google Scholar 

  • Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27:462–468

    Article  CAS  PubMed  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 6:1–13

    Article  CAS  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173(3):170–177

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Dobereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJ, Reis V (2001) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252(1):139–149

    Article  Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Biol 46(1):189–214

    Article  CAS  Google Scholar 

  • Brandl MT, Lindow SE (1998) Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl Environ Microbiol 64(9):3256–3263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bultman TL, Murphy JC (2000) Do fungal endophytes mediate wound-induced resistance? In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, Inc., New York, pp 412–453

    Google Scholar 

  • Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Chanway CP, Holl FB (1994) Ecological growth response specificity of two Douglas-fir ecotypes inoculated with coexistent beneficial rhizosphere bacteria. Can J Bot 72(5):582–586

    Article  Google Scholar 

  • Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl FB (2000) Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. Forest Ecol Manag 133(1):81–88

    Article  Google Scholar 

  • Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2009) Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur J Soil Biol 45:114–122

    Article  CAS  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2003) Endophytic colonization of Vitis vinifera. by plant growth-promoting bacterium burkholderia sp. strain psjn. Appl Environ Microbiol 71:1685–1693

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles mechanisms of action and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role colonization mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Conn VM, Franco CM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70(11):6407–6413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn KL, Lazarovits G, Nowak J (1997) Agnotobiotic bioassay for studying interactions between potatoes and plant growth-promoting rhizobacteria. Can J Microbiol 43(9):801–808

    Article  CAS  Google Scholar 

  • Coombs JT, Michelson PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as an antagonist of Gaeumannomyces graminis var tritici in wheat. Biol Control 29:3899–3905

    Article  Google Scholar 

  • Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol Plant-Microbe Interact 7(4):440–448

    Article  CAS  Google Scholar 

  • Coutinho BG, Licastro D, Mendonca-Previato L, Camara M, Venturi V (2015) Plant influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Mol Plant-Microbe Interact 28(1):10–21

    Article  PubMed  CAS  Google Scholar 

  • Dalal JM, Kulkarni NS, Bodhankar MG (2014) Utilization of indigenous endophytic microbes for induction of systemic resistance (ISR) in soybean (Glycine Max (L) Merril)against challenge inoculation with F. oxysporum. Res Biotechnol 6(1):70–84

    Google Scholar 

  • Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C (2004) Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 49(3):469–479

    Article  CAS  PubMed  Google Scholar 

  • De Bary A (1866) Morphologie und physiologie der plize Flechten und Myxomyceten. Englemann, Leipzig. https://doi.org/10.5962/bhl.title.120970

    Book  Google Scholar 

  • De Boer SH, Copeman RJ (1974) Endophytic bacterial flora in Solanum tuberosum and its significance in bacterial ring rot diagnosis. Can J Plant Sci 54(1):115–122

    Article  Google Scholar 

  • de Jager V, Siezen RJ (2011) Single-cell genomics: unravelling the genomes of unculturable microorganisms. Microb Biotechnol 4(4):431–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devi KK, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (rambur) by cyanide poisoning under in-vitro conditions. Curr Microbiol 54(1):74–78

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Maier A, Fiebig HH, Lin WH, Hertweck C (2011) A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem 9:4029–4031

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Broek AV, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212(2):153–162

    Article  Google Scholar 

  • Dobereiner J, Reis VM, Paula MA, Olivares FD (1992) Endophytic diazotrophs in sugarcane cereals and tuber plants. In: New horizons in nitrogen fixation. Springer, Dordrecht, pp 671–676

    Google Scholar 

  • Dobereiner J, Baldani VL, Reis VM (1995a) Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: Azospirillum VI and related microorganisms. Springer, Berlin/Heidelberg, pp 3–14

    Chapter  Google Scholar 

  • Dobereiner J, Urquiaga S, Boddey RM (1995b) Alternatives for nitrogen nutrition of crops in tropical agriculture. Fertil Res 42:339–346

    Article  CAS  Google Scholar 

  • Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66(7):2804–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudeja SS (2016) Beneficial effects and molecular diversity of endophytic bacteria in legume and nonlegumes. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 245–256

    Chapter  Google Scholar 

  • Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52(3):248–260

    Article  CAS  PubMed  Google Scholar 

  • Edwards J, Johnsona C, Santos-Medellína C, Luriea E, Podishettyb NK, Bhatnagarc S, Eisenc JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:911–920

    Article  CAS  Google Scholar 

  • Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato Y, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. J Soil Sci Plant Nutr 46(3):617–629

    Article  Google Scholar 

  • Elvira-Recuenco M, Van Vuurde JWL (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46(11):1036–1041

    Article  CAS  PubMed  Google Scholar 

  • Flaishman MA, Eyal Z, Zilberstein A, Voisard C, Haas D (1996) Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. Mol Plant-Microbe Interact 9(7):642–645

    Article  CAS  Google Scholar 

  • Fouchet P, Jayat C, Héchard Y, Ratinaud MH, Frelat G (1993) Recent advances of flow cytometry in fundamental and applied microbiology. Biol Cell 78:95–109

    Article  CAS  PubMed  Google Scholar 

  • Frommel MI, Nowak J, Lazorovits G (1993) Treatment of potato tubers with a growth promoting Pseudomonas sp.: plant growth responses and bacterium distribution in the rhizosphere. Plant Soil 150:51–60

    Article  Google Scholar 

  • Gagne S, Richard C, Rousseau H, Antoun H (1987) Xylem-residing bacteria in alfalfa roots. Can J Microbiol 33(11):996–1000

    Article  Google Scholar 

  • Gao Z, Zhuang J, Chen J, Liu X, Tang S (2004) Population of entophytic bacteria in maize roots and its dynamic analysis. J Appl Ecol 15(8):1344–1348

    Google Scholar 

  • Gao FK, Dai CC, Liu XZ (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4(13):1346–1351

    Google Scholar 

  • Garbeva P, Van Overbeek LS, Van Vuurde JWL, Van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41(4):369–383

    Article  CAS  PubMed  Google Scholar 

  • Germida JJ, Siciliano SD, Freitas J, Seib AM (1998) Diversity of root-associated bacteria associated with fieldgrown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett Publishers, Boston, MA, p 234

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Article  CAS  Google Scholar 

  • Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, Doktycz MJ (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77(17):5934–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

    Article  PubMed  PubMed Central  Google Scholar 

  • Govindarajan M, Balandreau J, Muthukumarasamy R, Revathi G, Lakshminarasimhan C (2006) Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280:239–252

    Article  CAS  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bio-active natural products from endophytes: a review. Appl Biochem Microbiol 44(2):36–142

    Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ (1998) Effect of buffering on the phosphate-solubilizing ability of microorganisms. World J Microbiol Biotechnol 14(5):669–673

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. In: Food security in nutrient-stressed environments: exploiting plants genetic capabilities. Springer, Dordrecht, pp 133–143

    Chapter  Google Scholar 

  • Hallmann J (2001) Plant interactions with endophytic bacteria. CABI Publishing, New York, pp 87–119

    Google Scholar 

  • Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. In: Microbial root endophytes. Springer, Berlin/Heidelberg, pp 15–31

    Chapter  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7:e30438. https://doi.org/10.1371/journal.pone.0030438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    Article  CAS  PubMed  Google Scholar 

  • Hofte M, Dong Q, Kourambas S, Krishnapillai V, Sherratt D, Mergeay M (1994) The sss gene product, which affects pyoverdin production in Pseudomonas aeruginosa 7NSK2, is a site-specific recombinase. Mol Microbiol 14(5):1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Pasternak JJ, Glick BR (1991) Biological consequences of plasmid transformation of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Can J Microbiol 37:796–799

    Article  CAS  Google Scholar 

  • Hong CE, Kwon SY, Park JM (2016) Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiol Res 185:13–21

    Article  CAS  PubMed  Google Scholar 

  • Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across South-Eastern Australia. Int J Syst Evol Microbiol 61(2):299–309

    Article  CAS  PubMed  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176(7):1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibanez F, Angelini J, Taurian T, Tonelli ML, Fabra A (2009) Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst Appl Microbiol 32(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Inahashi Y, Iwatsuki M, Ishiyama A, Namatame M, Nishihara TA, Matsumoto A, Hirose T, Sunazuka T, Yamada H, Otoguro K (2011) Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0450T. J Antibiot 64:303–307

    Article  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact 17(10):1078–1085

    Article  CAS  PubMed  Google Scholar 

  • Iniguez AL, Dong Y, Carter HD, Ahmer BM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact 18(2):169–178

    Article  CAS  PubMed  Google Scholar 

  • Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration location and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63(7):1262–1265

    Article  Google Scholar 

  • James EK, Gyaneshwar P, Barraquio WL, Mathan N, Ladha JK (2000) Endophytic diazotrophs associated with rice. In: The quest for nitrogen fixation in rice. International Rice Research Institute, Makati City, pp 119–140

    Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae 67. Mol Plant-Microbe Interact 15:894–906

    Article  CAS  PubMed  Google Scholar 

  • Jha B, Thakur MC, Iti Gontia Albrecht V, Stoffels M, Schmid M, Hartmann A (2009) Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. Eur J Soil Biol 45:62–72

    Article  CAS  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution ethnography and ecology. PLoS One 6(6):1–22

    Article  CAS  Google Scholar 

  • Kan FL, Chen ZY, Wang ET, Tian CF, Sui XH, Chen WX (2007) Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai–Tibet plateau and in other zones of China. Arch Microbiol 188(2):103–115

    Article  CAS  PubMed  Google Scholar 

  • Kennedy IR, Pereg-gerk LL, Wood C, Deaker R, Gilchrist K, Katupitiya S (1997) Biological nitrogen fixation in non-leguminous field crops: facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194(1–2):65–79

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Kim JD, Jeon BJ, Han JW, Park MY, Kang SA, Kim BS (2015) Evaluation of the endophytic nature of Bacillus amyloliquefaciens strain GYL4 and its efficacy in the control of anthracnose. Pest Mang Sci 72(8):1529–1536. https://doi.org/10.1002/ps.4181

    Article  CAS  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. Microb Endophytes 19:199–233

    Google Scholar 

  • Koli DK, Chopra P, Pooniya V, Swarnalakshmi K (2015) Characterization and evaluation of plant growth promoting endophytes in chickpea. International Conference on Frontiers of Plant Sciences and Developing Technologies (ICFPSDT). Banaras Hindu University, Varanasi, p 45

    Google Scholar 

  • Krishnamurthy K, Gnanamanickam SS (1997) Biological control of sheath blight of rice: induction of systemic resistance in rice by plant-associated Pseudomonas spp. Curr Sci 72:331–334

    Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6(12):1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Pathak DV, Dudeja SS, Saini R, Giri R, Narula S, Anand RC (2013) Legume nodule endophytes more diverse than endophytes from roots of legumes or non legumes in soils of Haryana India. J Microbiol Biotechnol Res 3(3):83–92

    Google Scholar 

  • Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6:1–8

    Article  PubMed  Google Scholar 

  • Kvist T, Ahring BK, Lasken RS, Westermann P (2007) Specific single-cell isolation and genomic amplification of uncultured microorganisms. Appl Microbiol Biotechnol 74:926–935

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, Reddy PM (1995) Extension of nitrogen fixation to rice – necessity and possibilities. GeoJournal 35(3):363–372

    Article  Google Scholar 

  • Ladha JK, Barraquio WL, Watanabe I (1983) Isolation and identification of nitrogen-fixing Enterobacter cloacae and Klebsiella planticola associated with rice plants. Can J Microbiol 29(10):1301–1308

    Article  Google Scholar 

  • Lazarovits G, Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. HortScience 32(2):188–192

    Article  Google Scholar 

  • Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186(16):5384–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras J, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissimum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61(3):1004–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40(1):238–246

    Article  CAS  Google Scholar 

  • Li J, Zhao GZ, Varma A, Qin S, Xiong Z, Huang HY, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ (2012) An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua. PLoS One 7(12):1–9

    Google Scholar 

  • Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, Gong Y (2009) Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control 49:277–285

    Article  Google Scholar 

  • Loaces I, Ferrando L, Scavino AF (2011) Dynamics diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61(3):606–618

    Article  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ER, Taghavi S, Mezgeay M, der Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606

    Article  Google Scholar 

  • Long HH, Sonntag DG, Schmidt DD, Baldwin IT (2010) The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. New Phytol 185(2):554–567

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224(2):268–278

    Article  CAS  PubMed  Google Scholar 

  • Maggini V, Leo MD, Mengoni A, Gallo ER, Miceli E, Reidel RVB, Biffi S, Pistelli L, Fani R, Firenzuoli F, Bogani P (2017) Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea (L.) Moench: an in vitro model. Sci Rep 7:16924. https://doi.org/10.1038/s41598-017-17110-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil rhizosphere and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb Ecol 34(3):210–223

    Article  CAS  PubMed  Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194(1–2):37–44

    Article  CAS  Google Scholar 

  • Marcy Y, Ouverney C, Bik EM, Lösekann T, Ivanova N, Martin HG (2007) Dissecting biological ‘dark matter’ with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. PNAS 104:11889–11894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G (2010) Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res 9:2372–2380

    Article  CAS  PubMed  Google Scholar 

  • Martínez L, Caballero-Mellado J, Orozco J, Martinez-Romero E (2003) Diazotrophic bacteria associated with banana (Musa sp.). Plant Soil 257(1):35–47

    Article  Google Scholar 

  • Mavingui P, Laguerre G, Berge O, Heulin T (1992) Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl Environ Microbiol 58(6):1894–1903

    CAS  PubMed  PubMed Central  Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  CAS  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol 40(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Miller KQC, Sze D-Y, Roufogalis B, Neilan B (2012) Culturable endophytes of medicinal plants and the genetic basis for their bioactivity. Microb Ecol 64:431–449

    Article  PubMed  Google Scholar 

  • Minorsky PV (2008) On the inside. Plant Physiol 146(4):1455–1456

    Article  CAS  PubMed Central  Google Scholar 

  • Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80(9):808–811

    Article  Google Scholar 

  • Misk A, Franco C (2011) Biocontrol of chickpea root rot using endophytic actinobacteria. Biol Control 56(5):811–822

    Google Scholar 

  • Mitter B, Petric A, Shin MW, Chain PSG, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A (2013) Comparative genome analysis of Burkholderia phytofirmans psjn reveals a wide spectrum of endophytic ecology and functioning of microbial endophytes lifestyles based on interaction strategies with host plants. Front Plant Sci 4:–120. https://doi.org/10.3389/fpls.2013.00120

  • Muller S, Nebe-von-Caron G (2010) Functional single cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 34:554–587

    Article  PubMed  CAS  Google Scholar 

  • Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo FB, Squartini A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar A, Eswaran A, Sangeetha G (2011) Induction of systemic resistance by mixtures of fungal and endophytic bacterial isolates against Pythium aphanidermatum. Acta. Physiol Plant 33:1933–1944

    CAS  Google Scholar 

  • Nasopoulou C, Pohjanen J, Koskimaki JJ, Zabetakis I, Pirttila AM (2014) Localization of strawberry (Fragaria ananassa) and Methylobacterium extorquens genes of strawberry flavor biosynthesis in strawberry tissue by in situ hybridization. J Plant Physiol 171:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1):265–270

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439

    Article  CAS  PubMed  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorekc K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1(1):27–46

    Article  CAS  PubMed  Google Scholar 

  • Pandya M, Rajput M, Rajkumar S (2015) Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology 84(1):80–89

    Article  CAS  Google Scholar 

  • Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86(1):36–44

    Article  CAS  Google Scholar 

  • Passari AK, Mishra VK, Singh G, Singh P, Kumar B, Gupta VK, Sarma RK, Saikia R, Donovan AO, Singh BP (2017) Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep 7:1–17

    Article  CAS  Google Scholar 

  • Patriquin DG, Doebereiner J, Jain DK (1983) Sites and processes of association between diazotrophs and grasses. Can J Microbiol 29:900–915

    Article  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220

    Article  CAS  PubMed  Google Scholar 

  • Pillay VK, Nowak J (1997) Inoculum density temperature and genotype effects on in-vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a Pseudomonad bacterium. Can J Microbiol 43(4):354–361

    Article  CAS  Google Scholar 

  • Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288

    Article  CAS  PubMed  Google Scholar 

  • Priti V, Ramesha BT, Singh S, Ravikanth G, Ganeshaia KN, Suryanarayanan TS, Shaanker RU (2013) How endophytic fungi as alternative sources of plant secondary metabolites? Curr Sci 97(4):477–478

    Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeonpea by co-inoculation of Bacillus strains with Rhizobium sp. Bioresour Technol 99(11):4544–4550

    Article  CAS  PubMed  Google Scholar 

  • Rajendran G, Patel MH, Joshi SJ (2012) Isolation and characterization of nodule-associated Exiguobacterium sp. from the root nodules of fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion. Int J Microbiol 12:1–8

    Article  Google Scholar 

  • Rasche F, Velvis H, Zachow C, Berg G, Van Elsas JD, Sessitsch A (2006) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43(3):555–566

    Article  CAS  Google Scholar 

  • Rascovan N, Carbonetto B, Perrig D, Díaz M, Canciani W, Abalo M, Alloati J, Gonzalez-Anta G, Vazquez MP (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep 6(28084):1–12

    Google Scholar 

  • Rediers H, Rainey PB, Vanderleyden J, De Mot R (2005) Unraveling the secret lives of bacteria: use of in-vivo expression technology and differential fluorescence induction promoter traps as tools for exploring niche-specific gene expression. Microbiol Mol Biol Rev 69(2):217–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998a) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification localization and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998b) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  CAS  PubMed  Google Scholar 

  • Reiter B, Burgmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol 49(9):549–555

    Article  CAS  PubMed  Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Funct Plant Biol 28(9):829–836

    Article  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17(4):319–339

    Article  PubMed  Google Scholar 

  • Rodriguez D, Andrade FH, Goudriaan J (2000) Does assimilate supply limit leaf expansion in wheat grown in the field under low phosphorus availability. Field Crop Res 67(3):227–238

    Article  Google Scholar 

  • Rosconi F, Davyt D, Martinez V, Martinez M, Abin-Carriquiry JA, Zane H, Butler A, de Souza EM, Fabiano E (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–927

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martinez-romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rothballer M, Schmid M, Fekete A, Hartmann A (2005) Comparative in-situ analysis of ipdC–gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environ Microbiol 7(11):1839–1846

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation characterization and evaluation of bacterial root and nodule endophytes from chickpea cultivated in northern India. J Basic Microbiol 55(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • Salisbury FB, Ross CW (1992) Plant physiology. Wadsworth Publishing Company, Belmont

    Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM, Van Peer R (1991) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. In: The rhizosphere and plant growth. Springer, Dordrecht, pp 211–219

    Chapter  Google Scholar 

  • Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Senthilkumar M, Swarnalakshmi K, Govindasamy V, Lee YK, Annapurna K (2009) Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus Rhizoctonia bataticola. Curr Microbiol 58(4):288–293

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50(4):239–249

    Article  CAS  PubMed  Google Scholar 

  • Sevilla M, Kennedy C, Triplett EW (2000) Genetic analysis of nitrogen fixation and plant-growth stimulating properties of Acetobacter diazotrophicus an endophyte of sugarcane. In: Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Wymondham, pp 737–760

    Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Shrestha RK, Ladha JK (1996) Genotypic variation in promotion of rice dinitrogen fixation as determined by nitrogen-15 dilution. Soil Sci Soc Am J 60(6):1815–1821

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22(6):641–650

    Article  CAS  Google Scholar 

  • Sobral JK, Araujo WL, Mendes R, Geraldi IO, Kleiner AAP, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6(12):1244–1251

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):1–13

    Article  CAS  Google Scholar 

  • Sprent JI, James EK (1995) N2-fixation by endophytic bacteria: questions of entry and operation. In: Azospirillum VI and related microorganisms. Springer, Berlin/Heidelberg, pp 15–30

    Chapter  Google Scholar 

  • Stajkovic O, De Meyer S, Milicic B, Willems A, Delic D (2009) Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.). Botanica Serbica 33(1):107–114

    Google Scholar 

  • Stoltzfus JR, So R, Malarvithi PP, Ladha JK, de Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV (1995) The role of endophytic bacteria during seed piece decay and potato tuberization. Plant Soil 175:257–263

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules roots stems and foliage and their influence on host growth. Biol Fertil Soils 25(1):13–19

    Article  Google Scholar 

  • Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucuscarota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253(2):381–390

    Article  CAS  Google Scholar 

  • Swarnalakshmi K, Senthilkumar M, Ramakrishnan B (2016) Endophytic actinobacteria: nitrogen fixation, phytohormone production and antibiosis. In: Plant growth promoting actinobacteria. Springer Science and Business Media, Singapore. https://doi.org/10.1007/978-981-10-0707-1-8

    Chapter  Google Scholar 

  • Tadych M, White JF, Moselio S (2009) Endophytic microbes. In: Encyclopedia of microbiology. Academic Press, Oxford, pp 431–442

    Chapter  Google Scholar 

  • Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUA130 and their antifungal activity. Microbiology 151:1691–1695

    Article  CAS  PubMed  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5(10):1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Shimizu T, Zakria M, Njoloma J, Saeki Y, Sakai M, Yamakawa T, Minamisawa K, Akao S (2006) Incorporation of DNA sequence encoding green fluorescent protein (GFP) intoendophytic diazotroph from sugarcane and sweet potato and the colonizing ability of these bacteria in Brassica oleracea. Microbes Environ 21:122–128

    Article  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57(1):67–71

    Article  CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68(5):2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triplett EW (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186(1):29–38

    Article  CAS  Google Scholar 

  • Turner JT, Lampel JS, Stearman RS, Sundin GW, Gunyuzlu P, Anderson JJ (1991) Stability of the δ-endotoxin gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol 57:3522–3528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urquiaga S, Cruz KH, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56(1):105–114

    Article  Google Scholar 

  • Van Overbeek L, Van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64(2):283–296

    Article  PubMed  CAS  Google Scholar 

  • Vassilev N, Vassileva M (2003) Biotechnological solubilization of rock phosphate on media containing agroindustrial wastes. Appl Environ Microbiol 61:435–440

    CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30(5–6):460–468

    Article  CAS  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91(2):127–141

    Article  CAS  PubMed  Google Scholar 

  • Verma SC, Singh A, Chowdhury SP, Tripathi AK (2004) Endophytic colonization ability of two deep-water rice endophytes Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26:425–429

    Article  CAS  PubMed  Google Scholar 

  • Von Wiren N, Khodr H, Hider RC (2000) Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron (III). Plant Physiol 124(3):1149–1158

    Article  Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol Fertil Soils 40(1):36–43

    Article  CAS  Google Scholar 

  • Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice. BMC Microbiol 17:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Liang G (2014) Control efficacy of endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial wilt Ralstonia solanacearum. Biomed Res Int 465435:1–11

    Google Scholar 

  • Wartiainen I, Eriksson T, Zheng W, Rasmussen U (2008) Variation in the active diazotrophic community in rice paddy- nifH PCR-DGGE analysis of rhizosphere and bulk soil. Appl Soil Ecol 39:65–75. https://doi.org/10.1016/j.apsoil.2007.11.008

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Schmidt TM (1997) Natural endophytic association between Rhizobium leguminosarum bv. Trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194(1–2):99–114

    Article  CAS  Google Scholar 

  • Yuan Y, Lee HT, Hu H, Scheben A, Edwards D (2018) Single-cell genomic analysis in plants. Genes 9:50. https://doi.org/10.3390/genes9010050

    Article  CAS  PubMed Central  Google Scholar 

  • Zabetakis I (1997) Enhancement of flavour biosynthesis from strawberry (Fragaria x ananassa) callus cultures by Methylobacterium species. Plant Cell Tissue Org Cult 50:179–183

    Article  CAS  Google Scholar 

  • Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, De Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51(3):375–393

    Article  PubMed  Google Scholar 

  • Zamora GML, Romero ME (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91(2):117–126

    Google Scholar 

  • Zhao L, Xu Y, Sun R, Deng Z, Yang W, Wei G (2011) Identification and characterization of the endophytic plant growth prompter Bacillus cereus strain MQ23 isolated from Sophora Alopecuroides root nodules. Braz J Microbiol 42:567–575

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karivaradharajan Swarnalakshmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swarnalakshmi, K., Rajkhowa, S., Senthilkumar, M., Dhar, D.W. (2019). Influence of Endophytic Bacteria on Growth Promotion and Protection against Diseases in Associated Plants. In: Singh, D., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-32-9084-6_12

Download citation

Publish with us

Policies and ethics