Skip to main content

Sonochemically Covalent Functionalized Graphene Oxide Towards Photoluminescence and Nanocytotoxicity Activities

  • Chapter
  • First Online:
Graphene Functionalization Strategies

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

The greener mechanistic cavitation method has been applied for synthesis of graphene oxide (GrO) based functionalized materials. The GrO functionalization with various amine substituted heterocyclic moieties (ASHM) have an emerging technology towards biomedical processing of graphene. Hence, an ultrasound energy has been applied for GrO functionalization with 2-Amino-1,3,4-thidiazole (ATDZ) to synthesize Covalent functionalized product f-(ATDZ)GrO. Structural investigations have confirmed the covalent functionalization (CF) of GrO to synthesize f-(ATDZ)GrO. The structure of f-(ATDZ)GrO has confirmed with Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV), RAMAN, X-ray diffraction (XRD), thermogravimetric analysis (TGA)/differential thermal analysis (DTA)/Differential thermal Gravimetry (DTG), Dynamic Light Scattering (DLS), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), atomic force microscopy (AFM), scanning electron microscopy (SEM). The structural insights provide a mechanistic understanding of functional expression, through the contribution of atomic domains (CAD). TGA of f-(ATDZ)GrO validates total percentage weight loss of 95.5% at 198.17 °C. Thermal stability of f-(ATDZ)GrO as temperature aspects also certified an exothermic curve obtained with DTA. The calculated PL band gap of 3.87 eV in noncompatible f-(ATDZ)GrO is indicating towards biosensing applications. In extension of functionalization series of GrO with heterocyclic derivative, the cytotoxicity of f-(ATDZ)GrO has evaluated with Sulforhodamine B (SRB) assay to living cells, HaCaT and Vero cell lines. The average estimated cell viabilities have observed ~91.575% with HaCaT cell lines over a wide concentration range of 10–80 μg mL−1. The high cytocompatibility of f-(ATDZ)GrO has further extent with Vero cell lines of ~36.825% biocompatibility. However, the morphological effect on HaCaT cell line and some extinct significant with Vero have evidently confirmed that higher cytocompatibility of f-(ATDZ)GrO can be explore for the cytocompatibility as Nanotoxicity aspects. Therefore, f-(ATDZ)GrO appeared as an advanced material which can be further used for development of various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mate. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  2. Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C.P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)

    Article  CAS  Google Scholar 

  3. Dai, L.: Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 1, 31–42 (2013)

    Article  CAS  Google Scholar 

  4. Park, J., Yan, M.: Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 46, 181–189 (2013)

    Article  CAS  Google Scholar 

  5. Chng, E.L.K., Pumera, M.: The toxicity of graphene oxides: dependence on the oxidative methods used. Chem. Eur. J. 19, 8227–8235 (2013)

    Article  CAS  Google Scholar 

  6. Chng, E.L.K., Sofer, Z., Pumera, M.: Cytotoxicity profile of highly hydrogenated graphene. Chem. Eur. J. 20, 6366–6373 (2014)

    Article  CAS  Google Scholar 

  7. Pinto, A.M., Gonçalves, C., Sousa, D.M., Ferreira, A.R., Moreira, J.A., Gonçalves, I.C., Magalhaes, F.D.: Smaller particle size and higher oxidation improves biocompatibility of graphene-based materials. Carbon 99, 318–329 (2016)

    Article  CAS  Google Scholar 

  8. Kumar, A.M., Suresh, B., Ramakrishna, S., Kim, K.S.: Biocompatible responsive polypyrrole/GO nanocomposite coatings for biomedical applications. RSC Adv. 5, 99866–99874 (2015)

    Article  CAS  Google Scholar 

  9. Hasanzadeh, M., Mokhtari, F., Shadjou, N., Eftekhari, A., Mokhtarzadeh, A., Jouyban-Gharamaleki, V., Soltanali, M.: Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate. J. Mater. Sci. Eng. C 75, 247–258 (2017)

    Article  CAS  Google Scholar 

  10. Barua, S., Chattopadhyay, P., Phukan, M.M., Konwar, B.K., Islam, J., Karak, N.: Biocompatible hyperbranched epoxy/silver–reduced graphene oxide–curcumin nanocomposite as an advanced antimicrobial material. RSC Adv. 4, 47797–47805 (2014)

    Article  CAS  Google Scholar 

  11. Barahuiea, F., Saifullaha, B., Dorniania, D., Fakurazid, S., Karthivashand, G., Husseina, M.Z., Elfghi, F.M.: Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid. J. Mater. Sci. Eng. C 74, 177–185 (2017)

    Article  CAS  Google Scholar 

  12. Zhang, H., Grüner, G., Zhao, Y.: Recent advancements of graphene in biomedicine. J. Mater. Chem. B 1, 2542 (2013)

    Article  CAS  Google Scholar 

  13. Shi, S., Chen, F., Ehlerding, E.B., Cai, W.: Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjugate Chem. 25, 1609–1619 (2014)

    Article  CAS  Google Scholar 

  14. Pattnaik, S., Swain, K., Lin, Z.: Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J. Mater. Chem. B 4, 7813–7831 (2016)

    Article  CAS  Google Scholar 

  15. Yousefi, M., Dadashpour, M., Hejazi, M., Hasanzadeh, M., Behnam, B., de la Guardia, M., Shadjou, N., Mokhtarzadeh, A.: Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. J. Mater. Sci. Eng. C 74, 568–581 (2017)

    Article  CAS  Google Scholar 

  16. Barua, S., Thakur, S., Aidew, L., Buragohain, A.K., Chattopadhyay, P., Karak, N.: One step preparation of a biocompatible, antimicrobial reduced graphene oxide–silver nanohybrid as a topical antimicrobial agent. RSC Adv. 4, 9777–9783 (2014)

    Article  CAS  Google Scholar 

  17. Kostarelos, K., Novoselov, K.S.: Materials science. exploring the interface of graphene and biology. Science 344, 261–263 (2014)

    Article  CAS  Google Scholar 

  18. An, J., Gou, Y., Yang, C., Hu, F., Wang, C.: Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. J. Mater. Sci. Eng. C 33, 2827–2837 (2013)

    Article  CAS  Google Scholar 

  19. Mitra, T., Manna, P.J., Raja, S.T.K., Gnanamani, A., Kundu, P.P.: Curcumin loaded nano graphene oxide reinforced fish scale collagen—a 3D scaffold biomaterial for wound healing applications. RSC Adv. 5, 98653–98665 (2015)

    Article  CAS  Google Scholar 

  20. Zhou, L., Wang, W., Tang, J., Zhou, J.-H., Jiang, H.-J., Shen, J.: Graphene oxide noncovalent photosensitizer and its anticancer activity in vitro. Chem. Eur. J. 17, 12084–12091 (2011)

    Article  CAS  Google Scholar 

  21. Yang, Y., Zhang, Y.-M., Chen, Y., Zhao, D., Chen, J.-T., Liu, Y.: Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chem. Eur. J. 18, 4208–4215 (2012)

    Article  CAS  Google Scholar 

  22. Gies, V., Zou, S.: Systematic toxicity investigation of graphene oxide: evaluation of assay selection, cell type, exposure period and flake size. Toxicol. Res. 7, 93–101 (2018)

    Article  CAS  Google Scholar 

  23. Pelin, M., Fusco, L., León, V., Martín, C., Criado, A., Sosa, S., Vázquez, E., Tubaro, A., Prato, M.: Differential cytotoxic effects of graphene and graphene oxide on skin Keratinocytes. Sci. Rep. 7, 40572-12 (2016)

    Google Scholar 

  24. Liao, K.-H., Lin, Y.-S., Macosko, C.W., Haynes, C.L.: Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces. 3, 2607–2615 (2011)

    Article  CAS  Google Scholar 

  25. Seabra, A.B., Paula, A.J., de Lima, R., Alves, O.L., Duran, N.: Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27, 159–168 (2014)

    Article  CAS  Google Scholar 

  26. Guo, X., Mei, N.: Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 22, 105–115 (2014)

    Article  CAS  Google Scholar 

  27. Kumar, S., Modak, D.M., Paik, P.: Graphene oxide for biomedical applications. J. Nanomed. Res. 5(6), 00136 (2017)

    Google Scholar 

  28. Dubey, P., Dr. Gopinath, P.: Functionalized graphene oxide based nanocarrier for tumor-targeted combination therapy to elicit enhanced cytotoxicity against breast cancer cells in vitro. Chem. Select. 1, 4845–4855 (2016)

    Article  CAS  Google Scholar 

  29. Li, Y., Feng, L., Shi, X., Wang, X., Yang, Y., Yang, K., Liu, T., Yang, G., Liu, Z.: Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. Small 10, 1544–1554 (2014)

    Article  CAS  Google Scholar 

  30. Yang, K., Li, Y., Tan, X., Peng, R., Liu, Z.: Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 9, 1492–1503 (2013)

    Article  CAS  Google Scholar 

  31. Peña-Bahamondea, J., Miguela, V.S., Nguyenb, H.N., Ozisikc, R., Rodrigues, D.F.: Functionalization of reduced graphene oxide with polysulfone brushes enhance antibacterial properties and reduce human cytotoxicity. Carbon 111, 258–268 (2017)

    Article  CAS  Google Scholar 

  32. Dong, H., Li, Y., Yu, J., Song, Y., Cai, X., Liu, J., Zhang, J., Ewing, R.C., Shi, D.: A versatile multicomponent assembly via β-cyclodextrin Host-guest chemistry on graphene for biomedical applications. Small 9, 446–456 (2013)

    Article  CAS  Google Scholar 

  33. Chena, J., Shia, X., Rena, L., Wanga, Y.: Graphene oxide/PVA inorganic/organic interpenetrating hydrogels with excellent mechanical properties and biocompatibility. Carbon 111, 18–27 (2017)

    Article  CAS  Google Scholar 

  34. Liu, Y., Zhang, Y., Zhang, T., Jiang, Y., Liu, X.: Synthesis, characterization and cytotoxicity of phosphorylcholine oligomer grafted graphene oxide. Carbon 71, 166–175 (2014)

    Article  CAS  Google Scholar 

  35. Bao, H., Pan, Y., Ping, Y., Sahoo, N.G., Wu, T., Li, L., Li, J., Gan, L.H.: Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7, 1569–1578 (2011)

    Article  CAS  Google Scholar 

  36. Sayyar, S., Murray, E., Thompson, B.C., Gambhir, S., Officer, D.L., Wallace, G.G.: Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 52, 296–304 (2013)

    Article  CAS  Google Scholar 

  37. Yan, R., Wu, H., Zheng, Q., Wang, J., Huang, J., Ding, K., Guo, Q., Wang, J.: Graphene quantum dots cut from graphene flakes: high electrocatalytic activity for oxygen reduction and low cytotoxicity. RSC Adv. 4, 23097–23106 (2014)

    Article  CAS  Google Scholar 

  38. Maktedar, S.S., Mehetre, S.S., Singh, M., Kale, R.K.: Ultrasound irradiation: a robust approach for direct functionalization of graphene oxide with thermal and antimicrobial aspects. Ultrason. Sonochem. 21, 1407–1416 (2014)

    Article  CAS  Google Scholar 

  39. Maktedar, S.S., Avashthi, G., Singh, M.: Understanding the significance of O-doped graphene towards biomedical applications. RSC Adv. 6, 114264–114275 (2016)

    Article  CAS  Google Scholar 

  40. Mehetre, S.S., Maktedar, S.S., Singh, M.: Understanding the mechanism of surface modification through enhanced thermal and electrochemical stabilities of N-doped graphene oxide. Appl. Surf. Sci. 366, 514–522 (2016)

    Article  CAS  Google Scholar 

  41. Wang, T., Zhu, S., Jiang, X.: Toxicity mechanism of graphene oxide and nitrogen- doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy. Toxicol. Res. 4, 885–894 (2015)

    Article  CAS  Google Scholar 

  42. Hirsch, A., Englert, J.M., Hauke, F.: Wet chemical functionalization of graphene. Acc. Chem. Res. 46, 87–96 (2013)

    Article  CAS  Google Scholar 

  43. James, E.J., Hersam, M.C.: Atomic covalent functionalization of graphene. Acc. Chem. Res. 46, 77–86 (2013)

    Article  CAS  Google Scholar 

  44. Hangxun, X., Kenneth, S.S.: Sonochemical preparation of functionalized graphenes. J. Am. Chem. Soc. 133, 9148–9151 (2011)

    Article  CAS  Google Scholar 

  45. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  46. Clauss, A., Plass, R., Boehm, H.P., Hofmann, U.: Untersuchungen zur structur des Graphitoxyds. Anorg. Allergy. Chem. 291, 205–220 (1957)

    Article  CAS  Google Scholar 

  47. Scholz, W., Boehm, H.P.: Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids. Anorg. Allg. Chem. 369, 327–340 (1969)

    Article  CAS  Google Scholar 

  48. Kenry, T., Lim, C.T.: Biocompatibility and nanotoxicity of layered two-dimensional nanomaterials. Chem. Nano. Mat. 3, 5–16 (2017)

    CAS  Google Scholar 

  49. Majeeda, W., Bourdoa, S., Petiboneb, D.M., Sainia, V., Vanga, K.B., Nimaa, Z.A., Darriguesa, E., Ghosha, A., Watanabea, F., Cascianoa, D., Alid, S.F., Birisa, A.S.: The role of surface chemistry in the cytotoxicity profile of graphene. J. Appl. Toxicol. 37, 462–470 (2017)

    Article  CAS  Google Scholar 

  50. Crisana, L., Crisanb, B., Soritauc, O., Baciutb, M., Radu, Birisd A., Baciuta, G., Lucaciu, O.: In vitro study of biocompatibility of a graphene composite with gold nanoparticles and hydroxyapatite on human osteoblasts. J. Appl. Toxicol. 35, 1200–1210 (2015)

    Article  CAS  Google Scholar 

  51. Bitounis, D., Ali-Boucetta, H., Hong, B.H., Min, D.-H., Kostarelos, K.: Prospects and challenges of graphene in biomedical applications. Adv. Mater. 25, 2258–2268 (2013)

    Article  CAS  Google Scholar 

  52. Farshid, B., Lalwani, G., Sitharaman, B.: In vitro cytocompatibility of one-dimensional and two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites. J. Biomed. Mater. Res. A 103, 2309–2321 (2015)

    Article  CAS  Google Scholar 

  53. Maktedar, S.S., Mehetre, S.S., Avashthi, G., Singh, M.: In situ sonochemical reduction and direct functionalization of graphene oxide: a robust approach with thermal and biomedical applications. Ultrason. Sonochem. 34, 67–77 (2017)

    Article  CAS  Google Scholar 

  54. Maktedar, S.S., Avashthi, G., Singh, M.: Ultrasound assisted simultaneous reduction and direct functionalization of graphene oxide with thermal and cytotoxicity profile. Ultrason. Sonochem. 34, 856–864 (2017)

    Article  CAS  Google Scholar 

  55. Maktedar, S.S., Malik, P., Avashthi, G., Singh, M.: Dispersion enhancing effect of sonochemically functionalized graphene oxide for catalysing antioxidant efficacy of curcumin. Ultrason. Sonochem. 39, 208–217 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Central University of Gujarat, India for support. Dr. Vasant Sathe, UGC-DAE CSR Indore, India is acknowledged for providing Raman facility. Dr. Jyoti A. Kode, ACTREC, Tata Memorial Centre, Mumbai, India is acknowledged for providing in vitro cytotoxicity screening facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Avashthi, G., Maktedar, S.S., Singh, M. (2019). Sonochemically Covalent Functionalized Graphene Oxide Towards Photoluminescence and Nanocytotoxicity Activities. In: Khan, A., Jawaid, M., Neppolian, B., Asiri, A. (eds) Graphene Functionalization Strategies. Carbon Nanostructures. Springer, Singapore. https://doi.org/10.1007/978-981-32-9057-0_4

Download citation

Publish with us

Policies and ethics