Skip to main content

Detection and Diagnosis of Seed-Borne and Seed-Associated Nematodes

  • Chapter
  • First Online:
Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management

Abstract

Seed is a very good carrier of phytonematodes, especially for long distance dissemination. This transmission occurs either directly through seed infection or via seed contamination. Although in low rate, this transmission becomes a serious concern when trans-boundary movement of invasive alien nematode species flares up in epiphytotic proportion. Hence, detection and diagnosis of seed-borne and seed-associated nematode are significant for their protection. So far, various conventional methods are mostly employed for detection, but advancement of modern approaches, viz. serological or molecular techniques, speeds up the process with more accurate detection. Their robustness and specificity with greater resolution help in identification and discrimination of different species of seed-borne phytonematodes, thus strengthening phytosanitary programme and ensuring low risk in world trade. It also helps in pest risk analysis (PRA) of any pests having quarantine importance and development of national standards for import of seed and planting materials. Besides these, for the identification of pest-free area, production of certified seeds, and promotion of export quality raw plant products, detection of seed and seed-associated nematodes is very essential. Hence, detection is always considered as primary step for crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abad P, Gouzy J, Aury JM et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 8:909–915

    Google Scholar 

  • Abrantes IMDO, Santos MCVD, ILPMD C et al (2004) Biochemical and molecular characterization of plant-parasitic nematodes. Phytopathol Mediterr 43:232–258

    CAS  Google Scholar 

  • Amiri S, Subotin SA, Moens M (2002) Identification of the beet cyst nematode Heterodera schachtii by PCR. Eur J Plant Pathol 108:497–506

    CAS  Google Scholar 

  • Andrássy I, Farkas K (1988) KertĂ©szeti növĂ©nyek fonálfĂ©reg kártevĹ‘i. MezĹ‘gazdasági KiadĂł, Budapest, pp 181–198

    Google Scholar 

  • Anwar SA, Mc Kenry MV, Riaz A et al (2001) Evaluation of wheat cultivars for Anguina tritici resistance, development and influence of nematode on wheat growth. Int J Nematol 11(2):150–156

    Google Scholar 

  • Atkinson HJ, Harris PD, Halk EJ et al (1988) Monoclonal antibodies to the soya bean cyst nematode, Heterodera glycines. Ann Appl Biol 112(3):459–469

    Google Scholar 

  • Barker JR, Lucas GB (1984) Nematode parasites of tobacco. In: Nickle WR (ed) Plant and insect nematodes. Marcel Dekker Inc, New York, pp 213–242

    Google Scholar 

  • Bird AF, Buttrose MS (1974) Ultra structural changes in the nematode Anguina tritici associated with anhydrobiosis. J Ultrastruct Res 48(2):177–189

    CAS  PubMed  Google Scholar 

  • Bolla RI, Weaver C, Winter REK (1988) Genomic differences among pathotypes of Bursaphelenchus xylophilus. J Nematol 20:309–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge J, Starr JL (2007) Plant nematodes of agricultural importance. Academic, Boston

    Google Scholar 

  • Bridge J, Plowright RA, Peng D (2005) Nematode parasites of rice. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn. CABI Publishing, Wallingford, pp 87–130

    Google Scholar 

  • Brodie BB (1998) Potato. In: Barker KR, Pederson GA, Windham GL (eds) Plant and nematode interactions. American Society of Agronomy, Inc/Crop Science Society of America, Inc/Soil Science Society of America, Inc, Madison, pp 567–594

    Google Scholar 

  • Burrows PR, Perry RN (1988) Two cloned DNA fragments which differentiate Globodera pallida from G. rostochiensis. Revue de NĂ©matologie 11:453–457

    Google Scholar 

  • Cadet P, Spaull VW (2005) Nematode parasites of sugarcane. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CAB International: Institute of Parasitology, Wallingford, pp 645–674

    Google Scholar 

  • Castagnone C, Abad P, Castagnone-Sereno P (2005) Satellite DNA-based species-specifc identifcation of single individuals of the pinewood nematode Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). Eur J Plant Pathol 112:191–193

    CAS  Google Scholar 

  • Chahal SS, Pannu PPS (1997) Detection of Tilletia indica in wheat and T. Barclayana in rice samples and its implication for seed certification. In: Hutchins JD, Reeves JC (eds) Seed health testing. CAB international published from Wallingford, UK, pp 153–158

    Google Scholar 

  • Coolen WA, D’Herde CJ (1972) A method for the quantitative extraction of nematodes from plant tissue. State Agriculture Research Centre, Ghent, p 77

    Google Scholar 

  • Correa VR, Mattos VS, Almeida MRA et al (2014) Genetic diversity of the root-knot nematode Meloidogyne ethiopica and development of a species-specific SCAR marker for its diagnosis. Plant Pathol 63:476–483

    CAS  Google Scholar 

  • Cox PG, Rahman L (1979) The overwinter decay of Ditylenchus angustus. Int Rice Res Newsl 7(3):15

    Google Scholar 

  • Curran J, Baillie DL, Webster JM (1985) Use of restriction fragment length differences in genomic DNA to identify nematode species. Parasitology 90(1):137–144

    Google Scholar 

  • Curtis RHC, Al-Hinai MS, Diggines AER et al (1997) Serological identification and quantification of Heterodera avenae from processed soil samples. Nematologica 43(2):199–213. https://doi.org/10.1163/004825997X00079

    Article  Google Scholar 

  • Dang-ngoc K (1981) Survival of Ditylenchus angustus in diseased stubble. Int Rice Res Newsl 6(6):13

    Google Scholar 

  • Davis EL, Aron LM, Pratt LH et al (1992) Novel immunization procedures used to develop monoclonal antibodies that binds to specific structures in Meloidogyne spp. Phytopathology 82:1244–1250

    Google Scholar 

  • de Boer JM, Smant G, Goverse A et al (1996) Secretory granule proteins from the subventral esophageal glands of the potato cyst nematode identified by monoclonal antibodies to a protein fraction from second-stage juveniles. Mol Plant-Microbe Interact 9(1):39–46

    PubMed  Google Scholar 

  • de Haan EG, Dekker CCEM, Tameling WIL et al (2014) The MeloTuber test: a real-time TaqMan® PCR-based assay to detect the root-knot nematodes Meloidogyne chitwoodi and M. fallax directly in potato tubers. OEPP/EPPO Bull 44(2):166–175

    Google Scholar 

  • De Ley P, De Ley IT, Morris K et al (2005) An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philos Trans R Soc Lond Ser B Biol Sci 360(1462):1945–1958. https://doi.org/10.1098/rstb.2005.1726

    Article  CAS  Google Scholar 

  • De Tempe J, Binnerts J (1979) Introduction to methods of seed health testing. Seed Sci Technol 7:601–636

    Google Scholar 

  • De Waele D, Jones BL, Bolton C et al (1989) Ditylenchus destructor in hulls and seeds of peanut. J Nematol 21(1):10–15

    Google Scholar 

  • Dell A, Haslam SM, Morris HR et al (1999) Immunogenic glycoconjugates implicated in parasitic nematode diseases. Biochim Biophys Acta 1455:353–362

    CAS  PubMed  Google Scholar 

  • Dropkin VH (1969) Cellular responses of plants to nematode infections. Annu Rev Phytopathol 7:101–122

    CAS  Google Scholar 

  • Dropkin VH (1976) Nematode parasites of plants, their ecology and the process of infection. In: Heitefuss R, Williams PH (eds) Physiological plant pathology, Encyclopedia of plant physiology (new series), vol 4. Springer-Verlag, Berlin, pp 222–242

    Google Scholar 

  • Elnifro EM, Ashshi AM, Cooper RJ et al (2000) Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev 13(4):559–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esquibet M, Grenier E, Plantard O et al (2003) DNA polymorphism in the stem nematode Ditylenchus dipsaci: development of diagnostic markers for normal and giant races. Genome 46(6):1077–1083

    CAS  PubMed  Google Scholar 

  • Esser RP, Meredith JA (1987) Red ring nematode. Nematology Circular No. 141. Florida Department of Agriculture and Consumer Services, Division of Plant Industry, p 4

    Google Scholar 

  • Eves-van den Akker S, Laetsch DR, Thorpe P et al (2016) The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biol 17(1):124. https://doi.org/10.1186/s13059-016-0985-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraz LCCB (1999) GĂŞnero Pratylenchus – os nematĂłides das lesões radiculares. RevisĂŁo Anual de Patologia de Plantas 7:157–195

    Google Scholar 

  • Ferris H (2013) Nemaplex: Anguina tritici. University of California, Davis. Retrieved March 17, 2016, from http://plpnemweb.ucdavis.edu/nemaplex/Taxadata/G006S4.htm

  • Ferris VR, Ferris JM, Faghihi J (1993) Variation in spacer ribosomal DNA in some cyst- forming species of plant parasitic nematodes. Fundam Appl Nematol 16(2):177–184

    Google Scholar 

  • Fielding MJ (1951) Observations on the length of dormancy in certain plant infecting nematodes. Proc Helminthol Soc Wash 18(2):110–112

    Google Scholar 

  • Floyd R, Eyualem A, Papert A et al (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850

    CAS  PubMed  Google Scholar 

  • Fortuner R, Orton-Williams KJ (1975) Review of the literature on Aphelenchoides besseyi Christie 1942, the nematode causing “white tip” disease in rice. Helminthol Abstr Ser B Plant Nematol 44:1–40

    Google Scholar 

  • François C, Kebdani N, Barker I et al (2006) Towards specific diagnosis of plant-parasitic nematodes using DNA oligonucleotide microarray technology: a case study with the quarantine species Meloidogyne chitwoodi. Mol Cell Probes 20(1):64–69

    PubMed  Google Scholar 

  • Gerbi SA (1985) Evolution of ribosomal DNA. In: McIntyre RJ (ed) Molecular evolutionary genetics. Plenum Press, New York, pp 419–517

    Google Scholar 

  • Gitaitis R, Walcott R (2007) The epidemiology and management of seed borne bacterial diseases. Annu Rev Phytopathol 45:371–397

    Google Scholar 

  • Godfrey GH (1929) A destructive root disease of pineapples and other plants due to Tylenchus brachyurus, n. sp. Phytopathology 19:611–630

    Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270(S1):S96–S99. https://doi.org/10.1098/rsbl.2003.0025

    Article  CAS  Google Scholar 

  • Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66(4):411–453

    CAS  PubMed  Google Scholar 

  • Hu MX, Zhuo K, Liao JL (2011) Multiplex PCR for the simultaneous identification and detection of Meloidogyne incognita, M. enterolobii and M. javanica using DNA extracted directly from individual galls. Phytopathology 101(11):1270–1277. https://doi.org/10.1094/PHYTO-04-11-0095

    Article  CAS  PubMed  Google Scholar 

  • Huang CS, Huang SP (1974) Dehydration and the survival of rice white tip nematode, Aphelenchoides besseyi. Nematologica 20(1):9–18

    Google Scholar 

  • Ibrahim SK, Perry RN, Burrows PR et al (1994) Differentiation of species and populations of Aphelenchoides and of Ditylenchus angustus using a fragment of ribosomal DNA. J Nematol 26(4):412–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwahori H, Kanzaki N, Futai K (2000) A simple, polymerase chain reaction-restriction fragment length polymorphism-aided diagnosis method for pine wilt disease. For Pathol 30:157–164. https://doi.org/10.1046/j.1439-0329.2000.00201.x

    Article  Google Scholar 

  • Janssen T, Karssen G, Verhaeven M et al (2016) Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. Sci Rep 6:22591. https://doi.org/10.1038/srep22591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones BL, De Waele D (1988) First report of Ditylenchus destructor in pods and seeds of peanut. Plant Dis 72:453

    Google Scholar 

  • Kalinski A, Huettel RN (1988) DNA restriction fragment length polymorphism in races of the soybean cyst nematode, Heterodera glycines. J Nematol 20(4):532–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapur-Ghai J, Kaur M, Goel P (2014) Development of enzyme linked immunosorbent assay (ELISA) for the detection of root-knot nematode Meloidogyne incognita. J Parasit Dis 38(3):302–306. https://doi.org/10.1007/s12639-013-0246-0

    Article  CAS  PubMed  Google Scholar 

  • Kaur S (2016) Role of molecular approaches in detection and management of plant parasitic nematodes in vegetable crops. Int J Curr Sci 19(3):E176–E198

    Google Scholar 

  • Kennedy MJ, Schoelz JE, Donald PA et al (1997) Unique immunogenic proteins in Heterodera glycines egg shells. J Nematol 29(3):276–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi T, Cotton JA, Dalzell JJ et al (2011) Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog 7(9):e1002219. https://doi.org/10.1371/journal.ppat.1002219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovaleva ES, Subbotin SA, Masler EP et al (2005) Molecular characterization of the actin gene from cyst nematodes in comparison to those from other nematodes. Comp Parasitol 72(1):39–49

    Google Scholar 

  • Leal I, Green M, Allen E et al (2007) Application of a real-time PCR method for the detection of pine wood nematode, Bursaphelenchus xylophilus, in wood samples from lodgepole pine. Nematology 9(3):351–362

    CAS  Google Scholar 

  • Li W, Zonghe Y, Nakhla MK et al (2015) Real-time PCR methods for detection and identification of the nematodes Anguina funesta, A. agrostis, A. tritici and A. pacificae. Plant Dis 99:1584–1589

    CAS  PubMed  Google Scholar 

  • Lopez MM, Bertolini E, Olmos A et al (2003) Innovative tools for detection of plant pathogenic viruses and bacteria. Int Microbiol 6(4):233–243

    CAS  PubMed  Google Scholar 

  • Marshall J, Crawford AM (1987) A cloned DNA fragment that can be used as a sensitive probe to distinguish Globodera pallida from Globodera rostochiensis and other cyst forming nematodes. J Nematol 19:541 (abstract)

    Google Scholar 

  • McCuiston JL, Hudson LC, Subbotin SA et al (2007) Conventional and PCR detection of Aphelenchoides fragariae in diverse ornamental host plant species. J Nematol 39(4):343–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • McSorley R, Parrado JL, Dankers WH (1984) A quantitative comparison of some methods for the extraction of nematodes from roots. Nematropica 14(1):72–84

    Google Scholar 

  • Neergaard P (1979) Seed pathology, vol 1 and 2. Macmillan Press, London

    Google Scholar 

  • Nega A (2014) Review on nematode molecular diagnostics: from bands to barcodes. J Biol Agric Health Care 4(27):129–153

    Google Scholar 

  • Nguyen-thi CT, Giang LT (1982) Relative humidity and nematode number and survival in rice seeds. Int Rice Res Newsl 7(4):14

    Google Scholar 

  • Niaz I, Dawar S (2009) Detection of seed borne mycoflora in maize (Zea mays L.). Pak J Bot 41(1):443–451

    Google Scholar 

  • Niu JH, Jian H, Guo QX et al (2012) Evaluation of loop-mediated isothermal amplification (LAMP) assays based on 5S rDNA-IGS2 regions for detecting Meloidogyne enterolobii. Plant Pathol 61:809–819. https://doi.org/10.1111/j.1365-3059.2011.02562.x

    Article  CAS  Google Scholar 

  • Opperman CH, Bird DM, Williamson VM et al (2008) Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proc Natl Acad Sci USA 105(39):14802–14807

    Google Scholar 

  • Palmer HM, Atkinson HJ, Perry RN (1992) Monoclonal antibodies (Mabs) specific to surface expressed antigens of Ditylenchus dipsaci. Fundam Appl Nematol 15(6):511–515

    Google Scholar 

  • Palmisano AM, Tacconi R, Trotti GC (1971) Sopravvivenza di Ditylenchus dipsaci (KĂĽhn) Filipjev Nematoda: tylenchidae) al processo digestive nei suini, equini e bovini. Redia 52:725–737

    Google Scholar 

  • Palomares-Rius JE, Cantalapiedra-Navarrete C, Archidona-Yuste A et al (2017) The utility of mt DNA and r DNA for barcoding and phylogeny of plant-parasitic nematodes from Longidoridae (Nematoda, Enoplea). Sci Rep 7:10905. https://doi.org/10.1038/s41598-017-11085-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng H, Peng D, Hu X et al (2012) Loop-mediated isothermal amplification for rapid and precise detection of the burrowing nematode, Radopholus similis, directly from diseased plant tissues. Nematology 14(8):977–986

    CAS  Google Scholar 

  • Peng H, Long H, Huang W et al (2017) Rapid, simple and direct detection of Meloidogyne hapla from infected root galls using loop-mediated isothermal amplification combined with FTA technology. Sci Rep 7:44853. https://doi.org/10.1038/srep44853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peral (2015) Qualitative pest risk analysis for the wheat gall nematode, Anguina tritici, in U.S. wheat for export. 1–50. United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Centre for Plant Health Science and Technology, Plant Epidemiology and Risk Analysis Laboratory

    Google Scholar 

  • Perera MR, Vanstone VA, Jones MG (2005) A novel approach to identify plant parasitic nematodes using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 19(11):1454–1460

    CAS  PubMed  Google Scholar 

  • Petersen DJ, Vrain TC (1996) Rapid identification of Meloidogyne chitwood, M. hapla and M. fallax using PCR primers to amplify their ribosomal intergenic spacer. Fund Appl Nematol 19(6):601–605

    Google Scholar 

  • Petersen DJ, Zijlstra C, Wishart J et al (1997) Specific probes efficiently distinguish root-knot nematode species using signature sequences in the ribosomal intergenic spacer. Fundam Appl Nematol 20:619–626

    Google Scholar 

  • Powers TO, Harris TS (1993) A polymerase chain reaction method for identification of five major Meloidogyne species. J Nematol 25(1):1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powers TO, Szalanski AL, Mullin PG et al (2001) Identification of seed gall nematodes of agronomic and regulatory concern with PCR-RFLP of ITS1. J Nematol 33(4):191–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad JS, Sharma OP, Gururaj K et al (2007) White-tip nematode associated with chaffiness of rice in Haryana. Indian J Plant Prot 35(1):153

    Google Scholar 

  • Rajput MA, Pathan MA, Lodhi AM et al (2005) Studies on seed-borne fungi of wheat in Sindh Province and their effect on seed germination. Pak J Bot 37(1):181–185

    Google Scholar 

  • Rao YS, Rao J (1979) Etiology of white-tip nematode disease in rice. Proc Indian Natl Sci Acad B 45(2):193–197

    Google Scholar 

  • Rao YS, Israel P, Biswas H (1970) Weed and rotation crop plants as hosts for the rice root knot nematode, Meloidogyne graminicola (Golden and Birchfield). Oryza 7(2):137–142

    Google Scholar 

  • Saeki Y, Kawano E, Yamashita C et al (2003) Detection of plant parasitic nematodes, Meloidogyne incognita and Pratylenchus coffeae by multiplex PCR using specific primers. Soil Sci Plant Nutr 49(2):291–295

    CAS  Google Scholar 

  • Sein T (1977) Seed-borne infection and ufra disease. Int Rice Res Newsl 2(2):6

    Google Scholar 

  • Seinhorst JW (1988) The estimation of densities of nematode populations in soil and plants. Vaxtskyddsrapporter No 51, Uppsala (SE)

    Google Scholar 

  • Sikora RA, Greco N, Silva JFV (2005) Nematode parasites of food legumes. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes on subtropical and tropical agriculture, 2nd edn. CABI, Wallingford, pp 259–318

    Google Scholar 

  • Silva RA, Pereira LC (2003) Efeito de densidades populacionais de Pratylenchus brachyurus na produtividade de duas cultivares de soja, em condições de campo. Nematol Bras 27:268

    Google Scholar 

  • Skantar AM, Carta LK (2004) Molecular characterization and phylogenetic evaluation of the Hsp90 gene from selected nematodes. J Nematol 36(4):466–480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa AIM, Gomes VF, RCV T (2003) Tratamento fisico aplicado as sementes de melao (Cucumis melo L.), importadas da Holanda, na erradicaçao de Ditylenchus dipsaci (Khun, 1857) Filipjev, 1936. Nematol Bras 27(2):223–225

    Google Scholar 

  • Spiegel Y, McClure MA (1995) The surface coat of plant-parasitic nematodes: chemical composition, origin and biological role- a review. J Nematol 27(2):127–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sturhan D, Brzeski MW (1991) Stem and bulb nematodes, Ditylenchus spp. In: Nickle WR (ed) Manual of agricultural nematology. Marcel Decker Inc., New York, pp 423–464

    Google Scholar 

  • Subbotin SA, Moens M (2006) Molecular taxonomy and phylogeny. In: Perry RN, Moens M (eds) Plant nematology. CAB International, Wallingford, pp 33–58

    Google Scholar 

  • Subbotin SA, Madani M, Krall E et al (2005) Molecular diagnostics, taxonomy and phylogeny of the stem nematode Ditylenchus dipsaci species complex based on the sequences of the internal transcribed spacer-rDNA. Phytopathology 95(11):1308–1315. https://doi.org/10.1094/PHYTO-95-1308

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Henry N, Craig S et al (2016) A multiplex real-time PCR assay for simultaneous detection and differentiation of Ditylenchus dipsaci, D. gigas and D. weischeri. J Nematol 48(4):374–375

    Google Scholar 

  • Szemes M, Bonants P, de Weerdt M et al (2005) Diagnostic application of padlock probes–multiplex detection of plant pathogens using universal microarrays. Nucleic Acids Res 33(8):e70. https://doi.org/10.1093/nar/gni069

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan MNH (2012) Molecular approaches to diagnostics for plant parasitic nematodes of biosecurity concern. PhD thesis, Murdoch University, Perth, Western Australia

    Google Scholar 

  • Todd EH, Atkins JG (1958) White-tip disease of rice I. Symptoms, laboratory culture of nematodes and pathogenicity tests. Phytopathology 48:632–637

    Google Scholar 

  • Uehara T, Mizukubo T, Kushida A et al (1998) Identification of Pratylenchus coffeae and P. loosi using specific primers for PCR amplification of ribosomal DNA. Nematologica 44:357–368

    Google Scholar 

  • van Doorn R, Szemes M, Bonants P et al (2007) Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on OpenArrays. BMC Genomics 8:276. https://doi.org/10.1186/1471-2164-8-276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Du P, Loan LC, Cuong ND et al (2001) Survey on seed borne fungi and its effects on grain quality of common rice cultivars in the Mekong Delta. Omonrice 9:107–113

    Google Scholar 

  • Vrain TC, Wakarchuk DA, Levesque AC et al (1992) Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundam Appl Nematol 15(6):563–573

    Google Scholar 

  • Wang X, Bosselut N, Castagnone C et al (2003) Multiplex polymerase chain reaction identification of single individuals of the Longidorid nematodes Xiphinema index, X diversicaudatum, X. vuittenezi, and X. italiae using specific primers from ribosomal genes. Phytopathology 93(2):160–166. https://doi.org/10.1094/PHYTO.2003.93.2.160

    Article  CAS  PubMed  Google Scholar 

  • White TM, Bruns T, Lee S et al (1990) Amplification and direct sequencing of fungal ribosomal RNA for phylo-genetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–321

    Google Scholar 

  • Ye W, Giblin-Davis RM, Braasch H et al (2007) Phylogenetic relationships among Bursaphelenchus species (Nematoda: Parasitaphelenchidae) inferred from nuclear ribosomal and mitochondrial DNA sequence data. Mol Phylogenet Evol 43:1185–1197

    CAS  PubMed  Google Scholar 

  • Zijlstra C (2000a) Identification of Meloidogyne chitwoodi, M. fallax and M. hapla based on SCAR PCR: A powerful way of enabling reliable identification of populations or individuals that share common traits. Eur J Plant Pathol 106(3):283–290

    CAS  Google Scholar 

  • Zijlstra C (2000b) Reliable identification of the quarantine root-knot nematodes Meloidogyne chitwoodi and M. fallax by PCR-based techniques. OEPP Bull 30:575–579

    Google Scholar 

  • Zijlstra C, van Hoof RA (2006) A multiplex real-time polymerase chain reaction (TaqMan) assay for the simultaneous detection of Meloidogyne chitwoodi and M. fallax. Phytopathology 96(11):1255–1262

    CAS  PubMed  Google Scholar 

  • Zijlstra C, Donkers-Venne THM, Fargette M (2000) Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays. Nematology 2(8):847–853

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R.K., Pandey, S.K., Chattopadhyay, A. (2020). Detection and Diagnosis of Seed-Borne and Seed-Associated Nematodes. In: Kumar, R., Gupta, A. (eds) Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management. Springer, Singapore. https://doi.org/10.1007/978-981-32-9046-4_8

Download citation

Publish with us

Policies and ethics