Skip to main content

The Epigenome of Aging

  • Chapter
  • First Online:
  • 530 Accesses

Abstract

Two major theories have been described to explain aging: the DNA damage theory of aging and the heterochromatin loss model of aging. The DNA damage theory of aging states that increasing accumulation of DNA damage accelerates aging while the heterochromatin loss model hypothesizes that the decay of heterochromatin formation is a hallmark of aging. The DNA damage response pathway as well as the heterochromatin formation requires epigenetic modulators, and thus both these theories encompass changes in the epigenome of a cell which is interplay between histone modifying enzymes, histone variants, ATP-dependent chromatin remodeling proteins, DNA methylation, and non-coding. It is also well documented that the epigenome changes through the life of an organism, a process termed epigenetic drift. Experimental data have shown that the epigenetic modulators perform an important role in defining the lifespan and changes in the epigenome are linked to aging as well as age-related disorders. These epigenetic alterations are one of the nine defining hallmarks of aging. In this review, I will focus on the role of epigenetic modulators in DNA damage response pathway as well as heterochromatin formation and the alterations effected by these modulators on the epigenome during aging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.

    Article  CAS  PubMed  Google Scholar 

  2. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chen J-H, Hales CN, Ozanne SE. DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res. 2007;35:7417–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garinis GA, van der Horst GTJ, Vijg J, Hoeijmakers HJ, J. DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol. 2008;10:1241–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408:433–9.

    Article  CAS  PubMed  Google Scholar 

  6. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Szilard L. On the nature of the aging process. Proc Natl Acad Sci USA. 1959;45:30–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Epstein J, Williams JR, Little JB. Deficient DNA repair in human progeroid cells. Proc Natl Acad Sci USA. 1973;70:977–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kyng KJ, Bohr VA. Gene expression and DNA repair in progeroid syndromes and human aging. Ageing Res Rev. 2005;4:579–602.

    Article  CAS  PubMed  Google Scholar 

  10. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JHJ. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15:465–81.

    Article  CAS  PubMed  Google Scholar 

  11. David SS, O’Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature. 2007;447:941–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krokan HE, Bjoras M. Base excision repair. Cold Spr Harb Perspect Biol. 2013;5:a012583.

    Google Scholar 

  13. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis. 2002;23:687–96.

    Article  CAS  PubMed  Google Scholar 

  14. Kanaar R, Hoeijmakers JH, van Gent DC. Molecular mechanisms of DNA double-strand break repair. Trends Cell Biol. 1998;8:483–9.

    Article  CAS  PubMed  Google Scholar 

  15. Guo Z, Heydari A, Richardson A. Nucleotide excision repair of actively transcribed versus nontranscribed DNA in rat hepatocytes: effect of age and dietary restriction. Exp Cell Res. 1998;245:228–38.

    Article  CAS  PubMed  Google Scholar 

  16. Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR, Appeldoorn E, Odijk H, Oostendorp R, Ahmad A, van Leeuwen W, et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature. 2006;444:1038–43.

    Article  CAS  PubMed  Google Scholar 

  17. Harman D. The aging process. Proc Natl Acad Sci USA. 1981;78:7124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maclean MJ, Aamodt R, Harris N, Alseth I, Seeberg E, Bjoras M, Piper PW. Base excision repair activities required for yeast to attain a full chronological life span. Aging Cell. 2003;2:93–104.

    Article  CAS  PubMed  Google Scholar 

  19. Chevanne M, Caldini R, Tombaccini D, Mocali A, Gori G, Paoletti F. Comparative levels of DNA breaks and sensitivity to oxidative stress in aged and senescent human fibroblasts: a distinctive pattern for centenarians. Biogerontology. 2003;4:97–104.

    Article  CAS  PubMed  Google Scholar 

  20. Singh NP, Ogburn CE, Wolf NS, van Belle G, Martin GM. DNA double-strand breaks in mouse kidney cells with age. Biogerontology. 2001;2:261–70.

    Article  CAS  PubMed  Google Scholar 

  21. Smerdon MJ. DNA repair and the role of chromatin structure. Curr Opin Cell Biol. 1991;3:422–8.

    Article  CAS  PubMed  Google Scholar 

  22. Bao Y, Shen X. Chromatin remodeling in DNA double-strand break repair. Curr Opin Genet Dev. 2007;17:126–31.

    Article  CAS  PubMed  Google Scholar 

  23. Huertas D, Sendra R, Muñoz P. Chromatin dynamics coupled to DNA repair. Epigenetics. 2009;4:31–42.

    Article  CAS  PubMed  Google Scholar 

  24. Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 2003;423:145–50.

    Article  CAS  PubMed  Google Scholar 

  25. Woodcock CL, Skoultchi AI, Fan Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res. 2006;14:17–25.

    Article  CAS  PubMed  Google Scholar 

  26. Woodcock CL, Ghosh RP. Chromatin Higher-order Structure and Dynamics. Cold Spring Harb Perspect Biol. 2010;2:a000596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA. 1964;51:786–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Georgakopoulos T, Thireos G. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 1992;11:4145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuo MH, Zhou J, Jambeck P, Churchill ME, Allis CD. Histone acetyltransferase activity of yeast Gcn 5p is required for the activation of target genes in vivo. Genes Dev. 1998;12:627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grant PA, Duggan L, Côté J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, et al. Yeast Gcn 5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 1997;11:1640–50.

    Article  CAS  PubMed  Google Scholar 

  31. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996;84:843–51.

    Article  CAS  PubMed  Google Scholar 

  32. Peterson CL, Laniel M-A. Histones and histone modifications. Curr Biol. 2004;14:R546–51.

    Article  CAS  PubMed  Google Scholar 

  33. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011; https://doi.org/10.1038/cr.2011.22.

  34. Cosgrove MS, Wolberger C. How does the histone code work? Biochem Cell Biol Biochim Biol Cell. 2005;83:468–76.

    Article  CAS  Google Scholar 

  35. Kamakaka RT, Biggins S. Histone variants: deviants? Genes Dev. 2005;19:295–310.

    Article  CAS  PubMed  Google Scholar 

  36. Sarma K, Reinberg D. Histone variants meet their match. Nat Rev Mol Cell Biol. 2005;6:139–49.

    Article  CAS  PubMed  Google Scholar 

  37. Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011;21:396–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Flaus A, Owen-Hughes T. Mechanisms for ATP-dependent chromatin remodelling: the means to the end. FEBS J. 2011;278:3579–95.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Watanabe S, Radman-Livaja M, Rando OJ, Peterson CL. A Histone Acetylation Switch Regulates H2A.Z Deposition by the SWR-C Remodeling Enzyme. Science. 2013;340:195–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gorbalenya AE, Koonin EV. Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol. 1993;3:419–29.

    Article  CAS  Google Scholar 

  41. Flaus A, Martin DMA, Barton GJ, Owen-Hughes T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 2006;34:2887–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neigeborn L, Carlson M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics. 1984;108:845–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Laurent BC, Treich I, Carlson M. Role of yeast SNF and SWI proteins in transcriptional activation. Cold Spring Harb Symp Quant Biol. 1993;58:257–63.

    Article  CAS  PubMed  Google Scholar 

  44. Trotter KW, Archer TK. The BRG1 transcriptional coregulator. Nucl Recept Signal. 2008;6:e004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395–402.

    Article  CAS  PubMed  Google Scholar 

  46. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293:1068–70.

    Article  CAS  PubMed  Google Scholar 

  47. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20.

    Article  CAS  PubMed  Google Scholar 

  48. Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell. 1991;64:1123–34.

    Article  CAS  PubMed  Google Scholar 

  49. Kass SU, Pruss D, Wolffe AP. How does DNA methylation repress transcription? Trends Genet. 1997;13:444–9.

    Article  CAS  PubMed  Google Scholar 

  50. Ooi SKT, Bestor TH. The colorful history of active DNA Demethylation. Cell. 2008;133:1145–8.

    Article  CAS  PubMed  Google Scholar 

  51. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11:607–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bhutani N, Burns DM, Blau HM. DNA demethylation dynamics. Cell. 2011;146:866–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo JU, Su Y, Zhong C, Ming G, Song H. Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain. Cell. 2011;145:423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Bürkle A, Caiafa P. Reconfiguration of DNA methylation in aging. Mech Ageing Dev. 2015;151:60–70.

    Article  CAS  PubMed  Google Scholar 

  55. Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14:341–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA Elements) project. Science. 2004;306:636–40.

    Article  CAS  Google Scholar 

  57. Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2001;2:919–29.

    Article  CAS  PubMed  Google Scholar 

  58. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15 Spec No 1:R17–29.

    Article  PubMed  CAS  Google Scholar 

  59. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34.

    Article  CAS  PubMed  Google Scholar 

  60. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.

    Article  CAS  PubMed  Google Scholar 

  61. Aravin AA, Hannon GJ, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science. 2007;318:761–4.

    Article  CAS  PubMed  Google Scholar 

  62. Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B. Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet. 2002;36:233–78.

    Article  CAS  PubMed  Google Scholar 

  63. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002;297:1833–7.

    Article  CAS  PubMed  Google Scholar 

  64. Wong CF, Tellam RL. MicroRNA-26a targets the histone methyltransferase enhancer of Zeste homolog 2 during myogenesis. J Biol Chem. 2008;283:9836–43.

    Article  CAS  PubMed  Google Scholar 

  65. Yuan J, Yang F, Chen B, Lu Z, Huo X, Zhou W, Wang F, Sun S. The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology. 2011;54:2025–35.

    Article  CAS  PubMed  Google Scholar 

  66. Navarro CL. Molecular bases of progeroid syndromes. Hum Mol Genet. 2006;15:R151–61.

    Article  CAS  PubMed  Google Scholar 

  67. Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, Oshima J, Loeb LA. The Werner syndrome protein is a DNA helicase. Nat Genet. 1997;17:100–3.

    Article  CAS  PubMed  Google Scholar 

  68. Shen J-C. Werner syndrome protein. I. DNA helicase and DNA exonuclease reside on the same polypeptide. J Biol Chem. 1998;273:34139–44.

    Article  CAS  PubMed  Google Scholar 

  69. Brosh RM, Orren DK, Nehlin JO, Ravn PH, Kenny MK, Machwe A, Bohr VA. Functional and physical interaction between WRN helicase and human replication protein A. J Biol Chem. 1999;274:18341–50.

    Article  CAS  PubMed  Google Scholar 

  70. Lebel M, Spillare EA, Harris CC, Leder P. The Werner syndrome gene product co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. J Biol Chem. 1999;274:37795–9.

    Article  CAS  PubMed  Google Scholar 

  71. Li B. Identification and biochemical characterization of a Werner’s syndrome protein complex with Ku70/80 and poly(ADP-ribose) polymerase-1. J Biol Chem. 2004;279:13659–67.

    Article  CAS  PubMed  Google Scholar 

  72. von Kobbe C. Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein. Nucleic Acids Res. 2004;32:4003–14.

    Article  Google Scholar 

  73. Li B. Functional interaction between Ku and the Werner syndrome protein in DNA end processing. J Biol Chem. 2000;275:28349–52.

    Article  CAS  PubMed  Google Scholar 

  74. Yannone SM, Roy S, Chan DW, Murphy MB, Huang S, Campisi J, Chen DJ. Werner syndrome protein is regulated and phosphorylated by DNA-dependent protein kinase. J Biol Chem. 2001;276:38242–8.

    Article  CAS  PubMed  Google Scholar 

  75. Blander G, Kipnis J, Leal JFM, Yu C-E, Schellenberg GD, Oren M. Physical and functional interaction between p53 and the Werner’s syndrome protein. J Biol Chem. 1999;274:29463–9.

    Article  CAS  PubMed  Google Scholar 

  76. Ciccia A, Bredemeyer AL, Sowa ME, Terret M-E, Jallepalli PV, Harper JW, Elledge SJ. The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev. 2009;23:2415–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Croteau DL, Popuri V, Opresko PL, Bohr VA. Human Rec Q helicases in DNA repair, recombination, and replication. Annu Rev Biochem. 2014;83:519–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Goto M. Werner’s syndrome: from clinics to genetics. Clin Exp Rheumatol. 2000;18:760–6.

    CAS  PubMed  Google Scholar 

  79. Pollex RL, Hegele RA. Hutchinson-Gilford progeria syndrome. Clin Genet. 2004;66:375–81.

    Article  CAS  PubMed  Google Scholar 

  80. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature. 2003;423:293–8.

    Article  CAS  PubMed  Google Scholar 

  81. Capell BC, Collins FS. Human laminopathies: nuclei gone genetically awry. Nat Rev Genet. 2006;7:940–52.

    Article  CAS  PubMed  Google Scholar 

  82. Liu G-H, Barkho BZ, Ruiz S, Diep D, Qu J, Yang S-L, Panopoulos AD, Suzuki K, Kurian L, Walsh C, et al. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature. 2011;472:221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E, Shim J, Kriks S, et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell. 2013;13:691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lehmann AR. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie. 2003;85:1101–11.

    Article  CAS  PubMed  Google Scholar 

  85. van Gool AJ, van der Horst GT, Citterio E, Hoeijmakers JH. Cockayne syndrome: defective repair of transcription? EMBO J. 1997;16:4155–62.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Henning KA, Li L, Iyer N, McDaniel LD, Reagan MS, Legerski R, Schultz RA, Stefanini M, Lehmann AR, Mayne LV, et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell. 1995;82:555–64.

    Article  CAS  PubMed  Google Scholar 

  87. Venema J, Mullenders LH, Natarajan AT, van Zeeland AA, Mayne LV. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci USA. 1990;87:4707–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rapin I, Lindenbaum Y, Dickson DW, Kraemer KH, Robbins JH. Cockayne syndrome and xeroderma pigmentosum. Neurology. 2000;55:1442–9.

    Article  CAS  PubMed  Google Scholar 

  89. Lehmann AR, Thompson AF, Harcourt SA, Stefanini M, Norris PG. Cockayne’s syndrome: correlation of clinical features with cellular sensitivity of RNA synthesis to UV irradiation. J Med Genet. 1993;30:679–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008;9:759–69.

    Article  CAS  PubMed  Google Scholar 

  91. Savitsky K, Sfez S, Tagle DA, Ziv Y, Sartiel A, Collins FS, Shiloh Y, Rotman G. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet. 1995;4:2025–32.

    Article  CAS  PubMed  Google Scholar 

  92. Lee J-H. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science. 2004;304:93–6.

    Article  CAS  PubMed  Google Scholar 

  93. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506.

    Article  CAS  PubMed  Google Scholar 

  94. Lavin MF, Shiloh Y. the genetic defect in Ataxia-telangiectasia. Annu Rev Immunol. 1997;15:177–202.

    Article  CAS  PubMed  Google Scholar 

  95. DiGiovanna JJ, Kraemer KH. Shining a light on xeroderma pigmentosum. J Invest Dermatol. 2012;132:785–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lehmann AR, Kirk-Bell S, Arlett CF, Paterson MC, Lohman PH, de Weerd-Kastelein EA, Bootsma D. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc Natl Acad. Sci USA. 1975;72:219–23.

    Article  CAS  PubMed  Google Scholar 

  97. Kraemer KH, Lee MM, Scotto J. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol. 1987;123:241–50.

    Article  CAS  PubMed  Google Scholar 

  98. Lehmann AR. The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev. 2001;15:15–23.

    Article  CAS  PubMed  Google Scholar 

  99. Taylor EM, Broughton BC, Botta E, Stefanini M, Sarasin A, Jaspers NG, Fawcett H, Harcourt SA, Arlett CF, Lehmann AR. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc Natl Acad Sci USA. 1997;94:8658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Faghri S, Tamura D, Kraemer KH, Digiovanna JJ. Trichothiodystrophy: a systematic review of 112 published cases characterises a wide spectrum of clinical manifestations. J Med Genet. 2008;45:609–21.

    Article  CAS  PubMed  Google Scholar 

  101. Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–12.

    Article  CAS  PubMed  Google Scholar 

  102. Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol J-H, Chen C-C, Li W, Tyler JK. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev. 2014;28:396–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK. Elevated histone expression promotes life span extension. Mol Cell. 2010;39:724–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Villeponteau B. The heterochromatin loss model of aging. Exp Gerontol. 1997;32:383–94.

    Article  CAS  PubMed  Google Scholar 

  105. Smeal T, Claus J, Kennedy B, Cole F, Guarente L. Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell. 1996;84:633–42.

    Article  CAS  PubMed  Google Scholar 

  106. Sturm Á, Ivics Z, Vellai T. The mechanism of ageing: primary role of transposable elements in genome disintegration. Cell Mol Life Sci CMLS. 2015;72:1839–47.

    Article  CAS  PubMed  Google Scholar 

  107. Smerdon MJ, Lieberman MW. Nucleosome rearrangement in human chromatin during UV-induced DNA- repair synthesis. Proc Natl Acad Sci USA. 1978;75:4238–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Brand M. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J. 2001;20:3187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol. 2001;21:6782–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Datta A, Bagchi S, Nag A, Shiyanov P, Adami GR, Yoon T, Raychaudhuri P. The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase. Mutat Res. 2001;486:89–97.

    Article  CAS  PubMed  Google Scholar 

  111. Bandyopadhyay D, Okan NA, Bales E, Nascimento L, Cole PA, Medrano EE. Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res. 2002;62:6231–9.

    CAS  PubMed  Google Scholar 

  112. Haigis MC, Guarente LP. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20:2913–21.

    Article  CAS  PubMed  Google Scholar 

  113. Finkel T, Deng C-X, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460:587–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hoppe GJ, Tanny JC, Rudner AD, Gerber SA, Danaie S, Gygi SP, Moazed D. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol. 2002;22:4167–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Straight AF, Shou W, Dowd GJ, Turck CW, Deshaies RJ, Johnson AD, Moazed D. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell. 1999;97:245–56.

    Article  CAS  PubMed  Google Scholar 

  116. Kennedy BK, Austriaco NR, Zhang J, Guarente L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell. 1995;80:485–96.

    Article  CAS  PubMed  Google Scholar 

  117. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13:2570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kennedy BK, Gotta M, Sinclair DA, Mills K, McNabb DS, Murthy M, Pak SM, Laroche T, Gasser SM, Guarente L. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell. 1997;89:381–91.

    Article  CAS  PubMed  Google Scholar 

  119. Sinclair DA, Guarente L. Extrachromosomal rDNA circles--a cause of aging in yeast. Cell. 1997;91:1033–42.

    Article  CAS  PubMed  Google Scholar 

  120. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang L-L, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6.

    Article  CAS  PubMed  Google Scholar 

  121. Kaeberlein M. Lessons on longevity from budding yeast. Nature. 2010;464:513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16:4623–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Saunders LR, Verdin E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene. 2007;26:5489–504.

    Article  CAS  PubMed  Google Scholar 

  124. van der Veer E, Ho C, O’Neil C, Barbosa N, Scott R, Cregan SP, Pickering JG. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem. 2007;282:10841–5.

    Article  PubMed  CAS  Google Scholar 

  125. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 2004;16:93–105.

    Article  CAS  PubMed  Google Scholar 

  126. Yuan Z, Seto E. A functional link between SIRT1 deacetylase and NBS1 in DNA damage response. Cell Cycle Georget Tex. 2007;6:2869–71.

    Article  CAS  Google Scholar 

  127. Fan W, Luo J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol Cell. 2010;39:247–58.

    Article  CAS  PubMed  Google Scholar 

  128. Yamamori T, DeRicco J, Naqvi A, Hoffman TA, Mattagajasingh I, Kasuno K, Jung S-B, Kim C-S, Irani K. SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Res. 2010;38:832–45.

    Article  CAS  PubMed  Google Scholar 

  129. Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, Gozani O, Chua KF. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle Georget Tex. 2009;8:2664–6.

    Article  CAS  Google Scholar 

  130. Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TLA, Barrett JC, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008;452:492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, et al. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging. 2009;1:109–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, et al. Genomic Instability and Aging-like Phenotype in the Absence of Mammalian SIRT6. Cell. 2006;124:315–29.

    Article  CAS  PubMed  Google Scholar 

  133. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483:218–21.

    Article  CAS  PubMed  Google Scholar 

  134. Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20:1075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tsai Y-C, Greco TM, Boonmee A, Miteva Y, Cristea IM. Functional Proteomics Establishes the Interaction of SIRT7 with Chromatin Remodeling Complexes and Expands Its Role in Regulation of RNA Polymerase I Transcription. Mol Cell Proteomics. 2012;11:60–76.

    Article  CAS  PubMed  Google Scholar 

  136. Tong Z, Wang Y, Zhang X, Kim DD, Sadhukhan S, Hao Q, Lin H. SIRT7 Is Activated by DNA and Deacetylates Histone H3 in the Chromatin Context. ACS Chem Biol. 2016;11:742–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, He L, Li W, Yi X, Sun L, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat. Commun. 2016;7:12235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vakhrusheva O, Braeuer D, Liu Z, Braun T, Bober E. Sirt 7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging. J Physiol Pharmacol. 2008;59(Suppl 9):201–12.

    PubMed  Google Scholar 

  139. Vazquez BN, Thackray JK, Simonet NG, Kane-Goldsmith N, Martinez-Redondo P, Nguyen T, Bunting S, Vaquero A, Tischfield JA, Serrano L. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J. 2016;35:1488–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kouzarides T. Histone methylation in transcriptional control. Curr Opin Genet Dev. 2002;12:198–209.

    Article  CAS  PubMed  Google Scholar 

  141. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh T-Y, Peng W, Zhang MQ, et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet. 2008;40:897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang CM, Tsai SN, Yew TW, Kwan YW, Ngai SM. Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8. Biogerontology. 2010;11:87–102.

    Article  CAS  PubMed  Google Scholar 

  143. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci. 2006;103:8703–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. McCord RP, Nazario-Toole A, Zhang H, Chines PS, Zhan Y, Erdos MR, Collins FS, Dekker J, Cao K. Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res. 2013;23:260–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Larson K, Yan S-J, Tsurumi A, Liu J, Zhou J, Gaur K, Guo D, Eickbush TH, Li WX. Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet. 2012;8:e1002473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Han S, Brunet A. Histone methylation makes its mark on longevity. Trends Cell Biol. 2012;22:42–9.

    Article  PubMed  CAS  Google Scholar 

  147. Maures TJ, Greer EL, Hauswirth AG, Brunet A. The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner: The H3K27me3 demethylase UTX-1 regulates worm lifespan. Aging Cell. 2011;10:980–90.

    Article  CAS  PubMed  Google Scholar 

  148. Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, Han S, Banko MR, Gozani O, Brunet A. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature. 2010;466:383–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jin C, Li J, Green CD, Yu X, Tang X, Han D, Xian B, Wang D, Huang X, Cao X, et al. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab. 2011;14:161–72.

    Article  CAS  PubMed  Google Scholar 

  150. Das C, Tyler JK. Histone exchange and histone modifications during transcription and aging. Biochim Biophys Acta. 2013;1819:332–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Piña B, Suau P. Changes in histones H2A and H3 variant composition in differentiating and mature rat brain cortical neurons. Dev Biol. 1987;123:51–8.

    Article  PubMed  Google Scholar 

  152. Urban MK, Zweidler A. Changes in nucleosomal core histone variants during chicken development and maturation. Dev Biol. 1983;95:421–8.

    Article  CAS  PubMed  Google Scholar 

  153. Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev. 2007;128:36–44.

    Article  CAS  PubMed  Google Scholar 

  154. Jin C, Felsenfeld G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev. 2007;21:1519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Thakar A, Gupta P, Ishibashi T, Finn R, Silva-Moreno B, Uchiyama S, Fukui K, Tomschik M, Ausio J, Zlatanova J. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies. Biochemistry (Mosc.). 2009;48:10852–7.

    Article  CAS  Google Scholar 

  156. Mizuguchi G, Shen X, Landry J, Wu W-H, Sen S, Wu C. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science. 2004;303:343–8.

    Article  CAS  PubMed  Google Scholar 

  157. Lee K, Lau ZZ, Meredith C, Park JH. Decrease of p400 ATPase complex and loss of H2A.Z within the p21 promoter occur in senescent IMR-90 human fibroblasts. Mech. Ageing Dev. 2012;133:686–94.

    Article  CAS  PubMed  Google Scholar 

  158. Toussaint O, Medrano E, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol. 2000;35:927–45.

    Article  CAS  PubMed  Google Scholar 

  159. Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet. 2001;28:139–45.

    Article  CAS  PubMed  Google Scholar 

  160. Riedel CG, Dowen RH, Lourenco GF, Kirienko NV, Heimbucher T, West JA, Bowman SK, Kingston RE, Dillin A, Asara JM, et al. DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat Cell Biol. 2013;15:491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Myant K, Termanis A, Sundaram AYM, Boe T, Li C, Merusi C, Burrage J, Heras JIL, Stancheva I. LSH and G9a/GLP complex are required for developmentally programmed DNA methylation. Genome Res. 2011;21:83–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhu H, Geiman TM, Xi S, Jiang Q, Schmidtmann A, Chen T, Li E, Muegge K. Lsh is involved in de novo methylation of DNA. EMBO J. 2006;25:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sun L-Q. Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG. Genes Dev. 2004;18:1035–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T. Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol. 2009;11:1261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Denslow SA, Wade PA. The human Mi-2/NuRD complex and gene regulation. Oncogene. 2007;26:5433–8.

    Article  CAS  PubMed  Google Scholar 

  166. Lai AY, Wade PA. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer. 2011;11:588–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dang W, Sutphin GL, Dorsey JA, Otte GL, Cao K, Perry RM, Wanat JJ, Saviolaki D, Murakami CJ, Tsuchiyama S, et al. Inactivation of yeast Isw2 chromatin remodeling enzyme mimics longevity effect of calorie restriction via induction of genotoxic stress response. Cell Metab. 2014;19:952–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ura K. ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J. 2001;20:2004–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Berdyshev GD, Korotaev GK, Boiarskikh GV, Vaniushin BF. Nucleotide composition of DNA and RNA from somatic tissues of humpback and its changes during spawning. Biokhimiia Mosc Russ. 1967;32:988–93.

    CAS  Google Scholar 

  170. Vanyushin BF, Nemirovsky LE, Klimenko VV, Vasiliev VK, Belozersky AN. The 5-methylcytosine in DNA of rats. . Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia. 1973;19:138–52.

    Article  CAS  PubMed  Google Scholar 

  171. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci. 2012;109:10522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. McClay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY, Hudson AD, Harada A, Hultman CM, Magnusson PKE, et al. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet. 2014;23:1175–85.

    Article  CAS  PubMed  Google Scholar 

  173. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, et al. From the cover: epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci. 2005;102:10604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Reichard JF, Schnekenburger M, Puga A. Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun. 2007;352:188–92.

    Article  CAS  PubMed  Google Scholar 

  175. Lee KWK, Pausova Z. Cigarette smoking and DNA methylation. Front Genet. 2013;4:132.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Hirner AV, Rettenmeier AW. Methylated metal (loid) species in humans. Met Ions Life Sci. 2010;7:465–521.

    Article  CAS  PubMed  Google Scholar 

  177. Slagboom PE, De Leeuw WJF, Vijg J. Messenger RNA levels and methlation patterns of GAPDH and β-actin genes in rat liver, spleen and brain in relation to aging. Mech Ageing Dev. 1990;53:243–57.

    Article  CAS  PubMed  Google Scholar 

  178. Ono T, Uehara Y, Kurishita A, Tawa R, Sakurai H. Biological significance of DNA methylation in the ageing process. Age Ageing. 1993;22:S34–43.

    Article  CAS  PubMed  Google Scholar 

  179. Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res. 1998;58:5489–94.

    CAS  PubMed  Google Scholar 

  180. Rath PC, Kanungo MS. Methylation of repetitive DNA sequences in the brain during aging of the rat. FEBS Lett. 1989;244:193–8.

    Article  CAS  PubMed  Google Scholar 

  181. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, Baccarelli A. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009;130:234–9.

    Article  CAS  PubMed  Google Scholar 

  182. Jintaridth P, Mutirangura A. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol Genomics. 2010;41:194–200.

    Article  CAS  PubMed  Google Scholar 

  183. Kriaucionis S, Heintz N. The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain. Science. 2009;324:929–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hu C, Svetlana D, Hari M. Effect of aging on 5-hydroxymethylcytosine in the mouse hippocampus. Restor Neurol Neurosci. 2012; https://doi.org/10.3233/RNN-2012-110223.

  185. Szulwach KE, Li X, Li Y, Song C-X, Wu H, Dai Q, Irier H, Upadhyay AK, Gearing M, Levey AI, et al. 5-hmC–mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci. 2011;14:1607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M. Long noncoding RNAs (lncRNAs) and the molecular hallmarks of aging. Aging. 2014;6:992–1009.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Chen L-H, Chiou G-Y, Chen Y-W, Li H-Y, Chiou S-H. microRNA and aging: a novel modulator in regulating the aging network. Ageing Res Rev. 2010;9:S59–66.

    Article  CAS  PubMed  Google Scholar 

  188. Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007;18:297–300.

    Article  CAS  PubMed  Google Scholar 

  189. Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Mück C, Laschober GT, Lepperdinger G, Sampson N, Berger P, et al. miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell. 2010;9:291–6.

    Article  CAS  PubMed  Google Scholar 

  190. Williams AE, Perry MM, Moschos SA, Lindsay MA. microRNA expression in the aging mouse lung. BMC Genomics. 2007;8:172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis. 2010;31:9–18.

    Article  CAS  PubMed  Google Scholar 

  192. Samper E, Flores JM, Blasco MA. Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc −/− mice with short telomeres. EMBO Rep. 2001;2:800–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Luke B, Lingner J. TERRA: telomeric repeat-containing RNA. EMBO J. 2009;28:2503–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 2010;38:5797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang C, Zhao L, Lu S. Role of TERRA in the regulation of telomere length. Int J Biol Sci. 2015;11:316–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Deng Z, Campbell AE, Lieberman PM. TERRA, CpG methylation and telomere heterochromatin: lessons from ICF syndrome cells. Cell Cycle Georget Tex. 2010;9:69–74.

    Article  CAS  Google Scholar 

  197. Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S, Dandolo L. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci. 2013;110:20693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Fu VX, Dobosy JR, Desotelle JA, Almassi N, Ewald JA, Srinivasan R, Berres M, Svaren J, Weindruch R, Jarrard DF. Aging and cancer-related loss of insulin-like growth factor 2 imprinting in the mouse and human prostate. Cancer Res. 2008;68:6797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bierhoff H, Schmitz K, Maass F, Ye J, Grummt I. Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes. Cold Spring Harb Symp Quant Biol. 2010;75:357–64.

    Article  CAS  PubMed  Google Scholar 

  200. Johnson R, Strehler BL. Loss of genes coding for ribosomal RNA in ageing brain cells. Nature. 1972;240:412–4.

    Article  CAS  PubMed  Google Scholar 

  201. Machwe A. Accelerated methylation of ribosomal RNA genes during the cellular senescence of Werner syndrome fibroblasts. FASEB J. 2000;14:1715–24.

    Article  CAS  PubMed  Google Scholar 

  202. Pietrzak M, Rempala G, Nelson PT, Zheng J-J, Hetman M. Epigenetic silencing of nucleolar rRNA genes in Alzheimer’s disease. PLoS ONE. 2011;6:e22585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol. 2005;6:298–305.

    Article  CAS  PubMed  Google Scholar 

  204. Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev. 2005;126:913–22.

    Article  CAS  PubMed  Google Scholar 

  205. Zhang R, Chen W, Adams PD. Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol. 2007;27:2343–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Narita M, Narita M, Krizhanovsky V, Nuñez S, Chicas A, Hearn SA, Myers MP, Lowe SW. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell. 2006;126:503–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohini Muthuswami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muthuswami, R. (2020). The Epigenome of Aging. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9005-1_8

Download citation

Publish with us

Policies and ethics