Skip to main content

The Retinal Pigment Epithelium

  • Chapter
  • 2742 Accesses

Abstract

Structure and origins

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010;93:61–84.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81.

    Article  CAS  PubMed  Google Scholar 

  3. Booij JC, Baas DC, Beisekeeva J, Gorgels TG, Bergen AA. The dynamic nature of Bruch's membrane. Prog Retin Eye Res. 2010;29:1–18.

    Article  CAS  PubMed  Google Scholar 

  4. Mieziewska K. The interphotoreceptor matrix, a space in sight. Microsc Res Tech. 1996;35:463–71.

    Article  CAS  PubMed  Google Scholar 

  5. Strauss OH, Helbig H. The function of the retinal pigment epithelium. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. New York, Philadelphia /London: Saunders/Elsevier; 2011.

    Google Scholar 

  6. Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med. 2010;10:802–23.

    Article  CAS  PubMed  Google Scholar 

  7. Haruta M. Embryonic stem cells: potential source for ocular repair. Semin Ophthalmol. 2005;20:17–23.

    Article  PubMed  Google Scholar 

  8. Boulton M, Dayhaw-Barker P. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye (Lond). 2001;15:384–9.

    Article  CAS  Google Scholar 

  9. Snell RS, Lemp MA. Clinical anatomy of the eye. Blackwell Science Inc: Oxford, England; 1998.

    Google Scholar 

  10. Gao H, Hollyfield JG. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1992;33:1–17.

    CAS  PubMed  Google Scholar 

  11. Marmorstein AD. The polarity of the retinal pigment epithelium. Traffic. 2001;2:867–72.

    Article  CAS  PubMed  Google Scholar 

  12. Bonilha VL, Bhattacharya SK, West KA, et al. Proteomic characterization of isolated retinal pigment epithelium microvilli. Mol Cell Proteomics. 2004;3:1119–27.

    Article  CAS  PubMed  Google Scholar 

  13. Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res. 2011;30:296–323.

    Article  CAS  PubMed  Google Scholar 

  14. Schraermeyer U, Heimann K. Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res. 1999;12:219–36.

    Article  CAS  PubMed  Google Scholar 

  15. Kennedy CJ, Rakoczy PE, Constable IJ. Lipofuscin of the retinal pigment epithelium: a review. Eye (Lond). 1995;9(Pt 6):763–71.

    Article  Google Scholar 

  16. Wu J, Seregard S, Algvere PV. Photochemical damage of the retina. Surv Ophthalmol. 2006;51:461–81.

    Article  PubMed  Google Scholar 

  17. Kevany BM, Palczewski K. Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda). 2010;25:8–15.

    Article  CAS  Google Scholar 

  18. Irschick EU, Haas G, Geiger M, et al. Phagocytosis of human retinal pigment epithelial cells: evidence of a diurnal rhythm, involvement of the cytoskeleton and interference of antiviral drugs. Ophthalmic Res. 2006;38:164–74.

    Article  CAS  PubMed  Google Scholar 

  19. Finnemann SC, Silverstein RL. Differential roles of CD36 and alphavbeta5 integrin in photoreceptor phagocytosis by the retinal pigment epithelium. J Exp Med. 2001;194:1289–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 1989;30:1691–9.

    CAS  PubMed  Google Scholar 

  21. Kolb, H. Photoreceptors, in Part II. Anatomy and Physiology of the Retina; Webvision. http://webvision.med.utah.edu.

  22. Parver LM. Temperature modulating action of choroidal blood flow. Eye (Lond). 1991;5(Pt 2):181–5.

    Article  Google Scholar 

  23. Boulton M, Moriarty P, Jarvis-Evans J, Marcyniuk B. Regional variation and age-related changes of lysosomal enzymes in the human retinal pigment epithelium. Br J Ophthalmol. 1994;78:125–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Plafker SM, O'Mealey GB, Szweda LI. Mechanisms for countering oxidative stress and damage in retinal pigment epithelium. Int Rev Cell Mol Biol. 2012;298:135–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Raghu P, Sivakumar B. Interactions amongst plasma retinol-binding protein, transthyretin and their ligands: implications in vitamin A homeostasis and transthyretin amyloidosis. Biochim Biophys Acta. 2004;1703:1–9.

    Article  CAS  PubMed  Google Scholar 

  26. Rando RR. Molecular mechanisms in visual pigment regeneration. Photochem Photobiol. 1992;56:1145–56.

    Article  CAS  PubMed  Google Scholar 

  27. Gollapalli DR, Rando RR. All-trans-retinyl esters are the substrates for isomerization in the vertebrate visual cycle. Biochemistry. 2003;42:5809–18.

    Article  CAS  PubMed  Google Scholar 

  28. Wolf G. Function of the protein RPE65 in the visual cycle. Nutr Rev. 2005;63:97–100.

    Article  PubMed  Google Scholar 

  29. Parker R, Wang JS, Kefalov VJ, Crouch RK. Interphotoreceptor retinoid-binding protein as the physiologically relevant carrier of 11-cis-retinol in the cone visual cycle. J Neurosci. 2011;31:4714–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Takahashi Y, Moiseyev G, Chen Y, Nikolaeva O, Ma JX. An alternative isomerohydrolase in the retinal Muller cells of a cone-dominant species. FEBS J. 2011;278:2913–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Jin M, Li S, Nusinowitz S, et al. The role of interphotoreceptor retinoid-binding protein on the translocation of visual retinoids and function of cone photoreceptors. J Neurosci. 2009;29:1486–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Travis GH, Kaylor J, Yuan Q. Analysis of the retinoid isomerase activities in the retinal pigment epithelium and retina. Methods Mol Biol. 2010;652:329–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lamb TD, Pugh Jr EN. Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Invest Ophthalmol Vis Sci. 2006;47:5137–52.

    Article  PubMed  Google Scholar 

  34. Qtaishat NM, Wiggert B, Pepperberg DR. Interphotoreceptor retinoid-binding protein (IRBP) promotes the release of all-trans retinol from the isolated retina following rhodopsin bleaching illumination. Exp Eye Res. 2005;81:455–63.

    Article  CAS  PubMed  Google Scholar 

  35. Rizzolo LJ. Development and role of tight junctions in the retinal pigment epithelium. Int Rev Cytol. 2007;258:195–234.

    Article  CAS  PubMed  Google Scholar 

  36. Masli S, Vega JL. Ocular immune privilege sites. Methods Mol Biol. 2011;677:449–58.

    Article  CAS  PubMed  Google Scholar 

  37. Miller SS, Edelman JL. Active ion transport pathways in the bovine retinal pigment epithelium. J Physiol. 1990;424:283–300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ban Y, Rizzolo LJ. Regulation of glucose transporters during development of the retinal pigment epithelium. Brain Res Dev Brain Res. 2000;121:89–95.

    Article  CAS  PubMed  Google Scholar 

  39. Bazan NG, Gordon WC, de Turco EB R. Docosahexaenoic acid uptake and metabolism in photoreceptors: retinal conservation by an efficient retinal pigment epithelial cell-mediated recycling process. Adv Exp Med Biol. 1992;318:295–306.

    Article  CAS  PubMed  Google Scholar 

  40. la Cour M, Lin H, Kenyon E, Miller SS. Lactate transport in freshly isolated human fetal retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1994;35:434–42.

    PubMed  Google Scholar 

  41. Quinn RH, Miller SS. Ion transport mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1992;33:3513–27.

    CAS  PubMed  Google Scholar 

  42. Joseph DP, Miller SS. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium. J Physiol. 1991;435:439–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. La Cour M. Cl- transport in frog retinal pigment epithelium. Exp Eye Res. 1992;54:921–31.

    Article  PubMed  Google Scholar 

  44. Miller SS, Hughes BA, Machen TE. Fluid transport across retinal pigment epithelium is inhibited by cyclic AMP. Proc Natl Acad Sci U S A. 1982;79:2111–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29:144–68.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Chou T, Siegel M. A mechanical model of retinal detachment. Phys Biol. 2012;9:046001.

    Article  PubMed  Google Scholar 

  47. Johnson LV, Hageman GS, Blanks JC. Interphotoreceptor matrix domains ensheath vertebrate cone photoreceptor cells. Invest Ophthalmol Vis Sci. 1986;27:129–35.

    CAS  PubMed  Google Scholar 

  48. Fitzgerald CR, Enoch JM, Birch DG, Benedetto MD, Temme LA, Dawson WW. Anomalous pigment epithelial photoreceptor relationships and receptor orientation. Invest Ophthalmol Vis Sci. 1980;19:956–66.

    CAS  PubMed  Google Scholar 

  49. Westheimer G. Directional sensitivity of the retina: 75 years of Stiles-Crawford effect. Proc Biol Sci. 2008;275:2777–86.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Mitchell CH. Release of ATP by a human retinal pigment epithelial cell line: potential for autocrine stimulation through subretinal space. J Physiol. 2001;534:193–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Holtkamp GM, Kijlstra A, Peek R, de Vos AF. Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res. 2001;20:29–48.

    Article  CAS  PubMed  Google Scholar 

  52. Dutt K, Douglas P, Cao Y. RPE-secreted factors: influence differentiation in human retinal cell line in dose- and density-dependent manner. J Ocul Biol Dis Infor. 2010;3:144–60.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Dutt K, Cao Y, Ezeonu I. Ciliary neurotrophic factor: a survival and differentiation inducer in human retinal progenitors. In Vitro Cell Dev Biol Anim. 2010;46:635–46.

    Article  PubMed  Google Scholar 

  54. Sheedlo HJ, Bartosh TJ, Wang Z, Srinivasan B, Brun-Zinkernagel AM, Roque RS. RPE-derived factors modulate photoreceptor differentiation: a possible role in the retinal stem cell niche. In Vitro Cell Dev Biol Anim. 2007;43:361–70.

    Article  CAS  PubMed  Google Scholar 

  55. Zamiri P, Sugita S, Streilein JW. Immunosuppressive properties of the pigmented epithelial cells and the subretinal space. Chem Immunol Allergy. 2007;92:86–93.

    Article  CAS  PubMed  Google Scholar 

  56. Hodson S, Armstrong I, Wigham C. Regulation of the retinal interphotoreceptor matrix Na by the retinal pigment epithelium during the light response. Experientia. 1994;50:438–41.

    Article  CAS  PubMed  Google Scholar 

  57. Korenbrot JI, Rebrik TI. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones. Adv Exp Med Biol. 2002;514:179–203.

    Article  CAS  PubMed  Google Scholar 

  58. Bialek S, Miller SS. K+ and Cl- transport mechanisms in bovine pigment epithelium that could modulate subretinal space volume and composition. J Physiol. 1994;475:401–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Hillenkamp J, Hussain AA, Jackson TL, Cunningham JR, Marshall J. Effect of taurine and apical potassium concentration on electrophysiologic parameters of bovine retinal pigment epithelium. Exp Eye Res. 2006;82:258–64.

    Article  CAS  PubMed  Google Scholar 

  60. Hanitzsch R, Lichtenberger T. Two neuronal retinal components of the electroretinogram c-wave. Doc Ophthalmol. 1997;94:275–85.

    Article  PubMed  Google Scholar 

  61. Bialek S, Joseph DP, Miller SS. The delayed basolateral membrane hyperpolarization of the bovine retinal pigment epithelium: mechanism of generation. J Physiol. 1995;484(Pt 1):53–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Constable PA. A perspective on the mechanism of the light-rise of the electrooculogram. Invest Ophthalmol Vis Sci. 2014;55:2669–73.

    Article  CAS  PubMed  Google Scholar 

  63. Marmor MF. Clinical electrophysiology of the retinal pigment epithelium. Doc Ophthalmol. 1991;76:301–13.

    Article  CAS  PubMed  Google Scholar 

  64. Marmor MF, Brigell MG, McCulloch DL, Westall CA, Bach M, International Society for Clinical Electrophysiology of V. ISCEV standard for clinical electro-oculography (2010 update). Doc Ophthalmol. 2011;122:1–7.

    Article  PubMed  Google Scholar 

  65. Abouzeid H, Wolfensberger TJ. Macular recovery after retinal detachment. Acta Ophthalmol Scand. 2006;84:597–605.

    Article  PubMed  Google Scholar 

  66. Lutty G, Grunwald J, Majji AB, Uyama M, Yoneya S. Changes in choriocapillaris and retinal pigment epithelium in age-related macular degeneration. Mol Vis. 1999;5:35.

    CAS  PubMed  Google Scholar 

  67. Loyet KM, Deforge LE, Katschke Jr KJ, et al. Activation of the alternative complement pathway in vitreous is controlled by genetics in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2012;53:6628–37.

    Article  CAS  PubMed  Google Scholar 

  68. Burke TR, Tsang SH. Allelic and phenotypic heterogeneity in ABCA4 mutations. Ophthalmic Genet. 2011;32:165–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Jacobson SG, Cideciyan AV, Ratnakaram R, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130:9–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Gosbell AD, Barry WR, Favilla I, Burkitt G. Computer-assisted analysis of the electro-oculogram. Aust N Z J Ophthalmol. 1991;19:335–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Skalicky, S.E. (2016). The Retinal Pigment Epithelium. In: Ocular and Visual Physiology. Springer, Singapore. https://doi.org/10.1007/978-981-287-846-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-846-5_9

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-845-8

  • Online ISBN: 978-981-287-846-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics