The Retinal Pigment Epithelium

  • Simon E. Skalicky


Structure and origins


Retinal Pigment Epithelium Retinal Pigment Epithelium Cell Outer Segment Subretinal Space Photoreceptor Outer Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010;93:61–84.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Booij JC, Baas DC, Beisekeeva J, Gorgels TG, Bergen AA. The dynamic nature of Bruch's membrane. Prog Retin Eye Res. 2010;29:1–18.CrossRefPubMedGoogle Scholar
  4. 4.
    Mieziewska K. The interphotoreceptor matrix, a space in sight. Microsc Res Tech. 1996;35:463–71.CrossRefPubMedGoogle Scholar
  5. 5.
    Strauss OH, Helbig H. The function of the retinal pigment epithelium. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. New York, Philadelphia /London: Saunders/Elsevier; 2011.Google Scholar
  6. 6.
    Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med. 2010;10:802–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Haruta M. Embryonic stem cells: potential source for ocular repair. Semin Ophthalmol. 2005;20:17–23.CrossRefPubMedGoogle Scholar
  8. 8.
    Boulton M, Dayhaw-Barker P. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye (Lond). 2001;15:384–9.CrossRefGoogle Scholar
  9. 9.
    Snell RS, Lemp MA. Clinical anatomy of the eye. Blackwell Science Inc: Oxford, England; 1998.Google Scholar
  10. 10.
    Gao H, Hollyfield JG. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1992;33:1–17.PubMedGoogle Scholar
  11. 11.
    Marmorstein AD. The polarity of the retinal pigment epithelium. Traffic. 2001;2:867–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Bonilha VL, Bhattacharya SK, West KA, et al. Proteomic characterization of isolated retinal pigment epithelium microvilli. Mol Cell Proteomics. 2004;3:1119–27.CrossRefPubMedGoogle Scholar
  13. 13.
    Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res. 2011;30:296–323.CrossRefPubMedGoogle Scholar
  14. 14.
    Schraermeyer U, Heimann K. Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res. 1999;12:219–36.CrossRefPubMedGoogle Scholar
  15. 15.
    Kennedy CJ, Rakoczy PE, Constable IJ. Lipofuscin of the retinal pigment epithelium: a review. Eye (Lond). 1995;9(Pt 6):763–71.CrossRefGoogle Scholar
  16. 16.
    Wu J, Seregard S, Algvere PV. Photochemical damage of the retina. Surv Ophthalmol. 2006;51:461–81.CrossRefPubMedGoogle Scholar
  17. 17.
    Kevany BM, Palczewski K. Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda). 2010;25:8–15.CrossRefGoogle Scholar
  18. 18.
    Irschick EU, Haas G, Geiger M, et al. Phagocytosis of human retinal pigment epithelial cells: evidence of a diurnal rhythm, involvement of the cytoskeleton and interference of antiviral drugs. Ophthalmic Res. 2006;38:164–74.CrossRefPubMedGoogle Scholar
  19. 19.
    Finnemann SC, Silverstein RL. Differential roles of CD36 and alphavbeta5 integrin in photoreceptor phagocytosis by the retinal pigment epithelium. J Exp Med. 2001;194:1289–98.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci. 1989;30:1691–9.PubMedGoogle Scholar
  21. 21.
    Kolb, H. Photoreceptors, in Part II. Anatomy and Physiology of the Retina; Webvision.
  22. 22.
    Parver LM. Temperature modulating action of choroidal blood flow. Eye (Lond). 1991;5(Pt 2):181–5.CrossRefGoogle Scholar
  23. 23.
    Boulton M, Moriarty P, Jarvis-Evans J, Marcyniuk B. Regional variation and age-related changes of lysosomal enzymes in the human retinal pigment epithelium. Br J Ophthalmol. 1994;78:125–9.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Plafker SM, O'Mealey GB, Szweda LI. Mechanisms for countering oxidative stress and damage in retinal pigment epithelium. Int Rev Cell Mol Biol. 2012;298:135–77.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Raghu P, Sivakumar B. Interactions amongst plasma retinol-binding protein, transthyretin and their ligands: implications in vitamin A homeostasis and transthyretin amyloidosis. Biochim Biophys Acta. 2004;1703:1–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Rando RR. Molecular mechanisms in visual pigment regeneration. Photochem Photobiol. 1992;56:1145–56.CrossRefPubMedGoogle Scholar
  27. 27.
    Gollapalli DR, Rando RR. All-trans-retinyl esters are the substrates for isomerization in the vertebrate visual cycle. Biochemistry. 2003;42:5809–18.CrossRefPubMedGoogle Scholar
  28. 28.
    Wolf G. Function of the protein RPE65 in the visual cycle. Nutr Rev. 2005;63:97–100.CrossRefPubMedGoogle Scholar
  29. 29.
    Parker R, Wang JS, Kefalov VJ, Crouch RK. Interphotoreceptor retinoid-binding protein as the physiologically relevant carrier of 11-cis-retinol in the cone visual cycle. J Neurosci. 2011;31:4714–9.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Takahashi Y, Moiseyev G, Chen Y, Nikolaeva O, Ma JX. An alternative isomerohydrolase in the retinal Muller cells of a cone-dominant species. FEBS J. 2011;278:2913–26.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Jin M, Li S, Nusinowitz S, et al. The role of interphotoreceptor retinoid-binding protein on the translocation of visual retinoids and function of cone photoreceptors. J Neurosci. 2009;29:1486–95.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Travis GH, Kaylor J, Yuan Q. Analysis of the retinoid isomerase activities in the retinal pigment epithelium and retina. Methods Mol Biol. 2010;652:329–39.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Lamb TD, Pugh Jr EN. Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Invest Ophthalmol Vis Sci. 2006;47:5137–52.CrossRefPubMedGoogle Scholar
  34. 34.
    Qtaishat NM, Wiggert B, Pepperberg DR. Interphotoreceptor retinoid-binding protein (IRBP) promotes the release of all-trans retinol from the isolated retina following rhodopsin bleaching illumination. Exp Eye Res. 2005;81:455–63.CrossRefPubMedGoogle Scholar
  35. 35.
    Rizzolo LJ. Development and role of tight junctions in the retinal pigment epithelium. Int Rev Cytol. 2007;258:195–234.CrossRefPubMedGoogle Scholar
  36. 36.
    Masli S, Vega JL. Ocular immune privilege sites. Methods Mol Biol. 2011;677:449–58.CrossRefPubMedGoogle Scholar
  37. 37.
    Miller SS, Edelman JL. Active ion transport pathways in the bovine retinal pigment epithelium. J Physiol. 1990;424:283–300.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Ban Y, Rizzolo LJ. Regulation of glucose transporters during development of the retinal pigment epithelium. Brain Res Dev Brain Res. 2000;121:89–95.CrossRefPubMedGoogle Scholar
  39. 39.
    Bazan NG, Gordon WC, de Turco EB R. Docosahexaenoic acid uptake and metabolism in photoreceptors: retinal conservation by an efficient retinal pigment epithelial cell-mediated recycling process. Adv Exp Med Biol. 1992;318:295–306.CrossRefPubMedGoogle Scholar
  40. 40.
    la Cour M, Lin H, Kenyon E, Miller SS. Lactate transport in freshly isolated human fetal retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1994;35:434–42.PubMedGoogle Scholar
  41. 41.
    Quinn RH, Miller SS. Ion transport mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1992;33:3513–27.PubMedGoogle Scholar
  42. 42.
    Joseph DP, Miller SS. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium. J Physiol. 1991;435:439–63.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    La Cour M. Cl- transport in frog retinal pigment epithelium. Exp Eye Res. 1992;54:921–31.CrossRefPubMedGoogle Scholar
  44. 44.
    Miller SS, Hughes BA, Machen TE. Fluid transport across retinal pigment epithelium is inhibited by cyclic AMP. Proc Natl Acad Sci U S A. 1982;79:2111–5.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29:144–68.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Chou T, Siegel M. A mechanical model of retinal detachment. Phys Biol. 2012;9:046001.CrossRefPubMedGoogle Scholar
  47. 47.
    Johnson LV, Hageman GS, Blanks JC. Interphotoreceptor matrix domains ensheath vertebrate cone photoreceptor cells. Invest Ophthalmol Vis Sci. 1986;27:129–35.PubMedGoogle Scholar
  48. 48.
    Fitzgerald CR, Enoch JM, Birch DG, Benedetto MD, Temme LA, Dawson WW. Anomalous pigment epithelial photoreceptor relationships and receptor orientation. Invest Ophthalmol Vis Sci. 1980;19:956–66.PubMedGoogle Scholar
  49. 49.
    Westheimer G. Directional sensitivity of the retina: 75 years of Stiles-Crawford effect. Proc Biol Sci. 2008;275:2777–86.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Mitchell CH. Release of ATP by a human retinal pigment epithelial cell line: potential for autocrine stimulation through subretinal space. J Physiol. 2001;534:193–202.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Holtkamp GM, Kijlstra A, Peek R, de Vos AF. Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Prog Retin Eye Res. 2001;20:29–48.CrossRefPubMedGoogle Scholar
  52. 52.
    Dutt K, Douglas P, Cao Y. RPE-secreted factors: influence differentiation in human retinal cell line in dose- and density-dependent manner. J Ocul Biol Dis Infor. 2010;3:144–60.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Dutt K, Cao Y, Ezeonu I. Ciliary neurotrophic factor: a survival and differentiation inducer in human retinal progenitors. In Vitro Cell Dev Biol Anim. 2010;46:635–46.CrossRefPubMedGoogle Scholar
  54. 54.
    Sheedlo HJ, Bartosh TJ, Wang Z, Srinivasan B, Brun-Zinkernagel AM, Roque RS. RPE-derived factors modulate photoreceptor differentiation: a possible role in the retinal stem cell niche. In Vitro Cell Dev Biol Anim. 2007;43:361–70.CrossRefPubMedGoogle Scholar
  55. 55.
    Zamiri P, Sugita S, Streilein JW. Immunosuppressive properties of the pigmented epithelial cells and the subretinal space. Chem Immunol Allergy. 2007;92:86–93.CrossRefPubMedGoogle Scholar
  56. 56.
    Hodson S, Armstrong I, Wigham C. Regulation of the retinal interphotoreceptor matrix Na by the retinal pigment epithelium during the light response. Experientia. 1994;50:438–41.CrossRefPubMedGoogle Scholar
  57. 57.
    Korenbrot JI, Rebrik TI. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones. Adv Exp Med Biol. 2002;514:179–203.CrossRefPubMedGoogle Scholar
  58. 58.
    Bialek S, Miller SS. K+ and Cl- transport mechanisms in bovine pigment epithelium that could modulate subretinal space volume and composition. J Physiol. 1994;475:401–17.PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Hillenkamp J, Hussain AA, Jackson TL, Cunningham JR, Marshall J. Effect of taurine and apical potassium concentration on electrophysiologic parameters of bovine retinal pigment epithelium. Exp Eye Res. 2006;82:258–64.CrossRefPubMedGoogle Scholar
  60. 60.
    Hanitzsch R, Lichtenberger T. Two neuronal retinal components of the electroretinogram c-wave. Doc Ophthalmol. 1997;94:275–85.CrossRefPubMedGoogle Scholar
  61. 61.
    Bialek S, Joseph DP, Miller SS. The delayed basolateral membrane hyperpolarization of the bovine retinal pigment epithelium: mechanism of generation. J Physiol. 1995;484(Pt 1):53–67.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Constable PA. A perspective on the mechanism of the light-rise of the electrooculogram. Invest Ophthalmol Vis Sci. 2014;55:2669–73.CrossRefPubMedGoogle Scholar
  63. 63.
    Marmor MF. Clinical electrophysiology of the retinal pigment epithelium. Doc Ophthalmol. 1991;76:301–13.CrossRefPubMedGoogle Scholar
  64. 64.
    Marmor MF, Brigell MG, McCulloch DL, Westall CA, Bach M, International Society for Clinical Electrophysiology of V. ISCEV standard for clinical electro-oculography (2010 update). Doc Ophthalmol. 2011;122:1–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Abouzeid H, Wolfensberger TJ. Macular recovery after retinal detachment. Acta Ophthalmol Scand. 2006;84:597–605.CrossRefPubMedGoogle Scholar
  66. 66.
    Lutty G, Grunwald J, Majji AB, Uyama M, Yoneya S. Changes in choriocapillaris and retinal pigment epithelium in age-related macular degeneration. Mol Vis. 1999;5:35.PubMedGoogle Scholar
  67. 67.
    Loyet KM, Deforge LE, Katschke Jr KJ, et al. Activation of the alternative complement pathway in vitreous is controlled by genetics in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2012;53:6628–37.CrossRefPubMedGoogle Scholar
  68. 68.
    Burke TR, Tsang SH. Allelic and phenotypic heterogeneity in ABCA4 mutations. Ophthalmic Genet. 2011;32:165–74.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Jacobson SG, Cideciyan AV, Ratnakaram R, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130:9–24.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Gosbell AD, Barry WR, Favilla I, Burkitt G. Computer-assisted analysis of the electro-oculogram. Aust N Z J Ophthalmol. 1991;19:335–41.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Simon E. Skalicky
    • 1
  1. 1.University of SydneySydneyAustralia

Personalised recommendations