Advertisement

Abstract

The retina is a highly specialized neural tissue that converts light into neural signal.

Keywords

Ganglion Cell Outer Segment Bipolar Cell Photoreceptor Cell Amacrine Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010;93:61–84.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Zaghloul NA, Yan B, Moody SA. Step-wise specification of retinal stem cells during normal embryogenesis. Biol Cell. 2005;97:321–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Bassett EA, Wallace VA. Cell fate determination in the vertebrate retina. Trends Neurosci. 2012;35:565–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Reese BE. Development of the retina and optic pathway. Vision Res. 2011;51:613–32.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Wallace VA. Proliferative and cell fate effects of Hedgehog signaling in the vertebrate retina. Brain Res. 2008;1192:61–75.PubMedCrossRefGoogle Scholar
  6. 6.
    Vajzovic L, Hendrickson AE, O’Connell RV, et al. Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology. Am J Ophthalmol. 2012;154:779–89 e2.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Hendrickson A, Possin D, Vajzovic L, Toth CA. Histologic development of the human fovea from midgestation to maturity. Am J Ophthalmol. 2012;154:767–78 e2.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ali RR, Sowden JC. Regenerative medicine: DIY eye. Nature. 2011;472:42–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee BB, Martin PR, Grunert U. Retinal connectivity and primate vision. Prog Retin Eye Res. 2010;29:622–39.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Wassle H, Boycott BB. Functional architecture of the mammalian retina. Physiol Rev. 1991;71:447–80.PubMedGoogle Scholar
  11. 11.
    Reichenbach A, Bringmann A. New functions of Muller cells. Glia. 2013;61:651–78.PubMedCrossRefGoogle Scholar
  12. 12.
    Dyer MA, Cepko CL. Regulating proliferation during retinal development. Nat Rev Neurosci. 2001;2:333–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Provis JM, Penfold PL, Cornish EE, Sandercoe TM, Madigan MC. Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin Exp Optom. 2005;88:269–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Li B, Vachali P, Bernstein PS. Human ocular carotenoid-binding proteins. Photochem Photobiol Sci. 2010;9:1418–25.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Provis JM, Diaz CM, Dreher B. Ontogeny of the primate fovea: a central issue in retinal development. Prog Neurobiol. 1998;54:549–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Dubis AM, Hansen BR, Cooper RF, Beringer J, Dubra A, Carroll J. Relationship between the foveal avascular zone and foveal pit morphology. Invest Ophthalmol Vis Sci. 2012;53:1628–36.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Chui TY, Song H, Burns SA. Adaptive-optics imaging of human cone photoreceptor distribution. J Opt Soc Am A Opt Image Sci Vis. 2008;25:3021–9.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ahnelt PK. The photoreceptor mosaic. Eye (Lond). 1998;12(Pt 3b):531–40.CrossRefGoogle Scholar
  19. 19.
    Knighton RW, Gregori G. The shape of the ganglion cell plus inner plexiform layers of the normal human macula. Invest Ophthalmol Vis Sci. 2012;53:7412–20.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Osterberg G. Topography of the layer of rods and cones in the human retina. Acta Ophthalmol Suppl. 1935;13:1–102.Google Scholar
  21. 21.
    Schnapf JL, Kraft TW, Baylor DA. Spectral sensitivity of human cone photoreceptors. Nature. 1987;325:439–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Kraft TW, Schneeweis DM, Schnapf JL. Visual transduction in human rod photoreceptors. J Physiol. 1993;464:747–65.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Wikler KC, Rakic P. Development of photoreceptor mosaics in the primate retina. Perspect Dev Neurobiol. 1996;3:161–75.PubMedGoogle Scholar
  24. 24.
    McLeish PR, Makino CL. Photoresponses of rods and cones. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. New York, Philadelphia/London: Saunders/Elsevier; 2011.Google Scholar
  25. 25.
    Lamb TD. Light adaptation in photoreceptors. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. New York, Philadelphia /London: Saunders/Elsevier; 2011.Google Scholar
  26. 26.
    Molday RS. Molecular organization of rod outer segments. Photoreceptor cell biology and inherited retinal degenerations. London: World Scientific; 2004.Google Scholar
  27. 27.
    Arikawa K, Molday LL, Molday RS, Williams DS. Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. J Cell Biol. 1992;116:659–67.PubMedCrossRefGoogle Scholar
  28. 28.
    Borwein B, Borwein D, Medeiros J, McGowan JW. The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones. Am J Anat. 1980;159:125–46.PubMedCrossRefGoogle Scholar
  29. 29.
    Steinberg RH, Fisher SK, Anderson DH. Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol. 1980;190:501–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Goldberg AF. Role of peripherin/rds in vertebrate photoreceptor architecture and inherited retinal degenerations. Int Rev Cytol. 2006;253:131–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Nguyen-Legros J, Hicks D. Renewal of photoreceptor outer segments and their phagocytosis by the retinal pigment epithelium. Int Rev Cytol. 2000;196:245–313.PubMedCrossRefGoogle Scholar
  32. 32.
    Takemoto DJ, Cunnick JM. Visual transduction in rod outer segments. Cell Signal. 1990;2:99–104.PubMedCrossRefGoogle Scholar
  33. 33.
    Albert AD, Boesze-Battaglia K. The role of cholesterol in rod outer segment membranes. Prog Lipid Res. 2005;44:99–124.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hoang QV, Linsenmeier RA, Chung CK, Curcio CA. Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation. Vis Neurosci. 2002;19:395–407.PubMedCrossRefGoogle Scholar
  35. 35.
    Yagi T, MacLeish PR. Ionic conductances of monkey solitary cone inner segments. J Neurophysiol. 1994;71:656–65.PubMedGoogle Scholar
  36. 36.
    Karan S, Zhang H, Li S, Frederick JM, Baehr W. A model for transport of membrane-associated phototransduction polypeptides in rod and cone photoreceptor inner segments. Vision Res. 2008;48:442–52.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Giessl A, Trojan P, Rausch S, Pulvermuller A, Wolfrum U. Centrins, gatekeepers for the light-dependent translocation of transducin through the photoreceptor cell connecting cilium. Vision Res. 2006;46:4502–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Duong TQ, Pardue MT, Thule PM, et al. Layer-specific anatomical, physiological and functional MRI of the retina. NMR Biomed. 2008;21:978–96.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Thoreson WB. Kinetics of synaptic transmission at ribbon synapses of rods and cones. Mol Neurobiol. 2007;36:205–23.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Mariani AP. The neuronal organization of the outer plexiform layer of the primate retina. Int Rev Cytol. 1984;86:285–320.PubMedCrossRefGoogle Scholar
  41. 41.
    Eggers ED, Lukasiewicz PD. Multiple pathways of inhibition shape bipolar cell responses in the retina. Vis Neurosci. 2011;28:95–108.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Haverkamp S, Grunert U, Wassle H. The cone pedicle, a complex synapse in the retina. Neuron. 2000;27:85–95.PubMedCrossRefGoogle Scholar
  43. 43.
    Hornstein EP, Verweij J, Li PH, Schnapf JL. Gap-junctional coupling and absolute sensitivity of photoreceptors in macaque retina. J Neurosci. 2005;25:11201–9.PubMedCrossRefGoogle Scholar
  44. 44.
    O’Brien JJ, Chen X, Macleish PR, O’Brien J, Massey SC. Photoreceptor coupling mediated by connexin36 in the primate retina. J Neurosci. 2012;32:4675–87.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Zhong H, Molday LL, Molday RS, Yau KW. The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature. 2002;420:193–8.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Bauer PJ. The complex of cGMP-gated channel and Na+/Ca2+, K+ exchanger in rod photoreceptors. Adv Exp Med Biol. 2002;514:253–74.PubMedCrossRefGoogle Scholar
  47. 47.
    Schneeweis DM, Schnapf JL. Photovoltage of rods and cones in the macaque retina. Science. 1995;268:1053–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Singer JH. Multivesicular release and saturation of glutamatergic signalling at retinal ribbon synapses. J Physiol. 2007;580:23–9.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Korenbrot JI, Rebrik TI. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones. Adv Exp Med Biol. 2002;514:179–203.PubMedCrossRefGoogle Scholar
  50. 50.
    Roof DJ, Makino CL. The structure and function of retinal photoreceptors. In: Albert DM, Jakobiec FA, editors. Principles and practice of ophthalmology. 2nd ed. Philadelphia: WB Saunders; 2000. p. 1624–73.Google Scholar
  51. 51.
    Baylor DA, Nunn BJ, Schnapf JL. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J Physiol. 1984;357:575–607.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Schneeweis DM, Schnapf JL. The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics. J Neurosci. 1999;19:1203–16.PubMedGoogle Scholar
  53. 53.
    Schneeweis DM, Schnapf JL. Noise and light adaptation in rods of the macaque monkey. Vis Neurosci. 2000;17:659–66.PubMedCrossRefGoogle Scholar
  54. 54.
    Rieke F, Baylor DA. Origin of reproducibility in the responses of retinal rods to single photons. Biophys J. 1998;75:1836–57.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Fain GL, Quandt FN, Gerschenfeld HM. Calcium-dependent regenerative responses in rods. Nature. 1977;269:707–10.PubMedCrossRefGoogle Scholar
  56. 56.
    Hamer RD, Nicholas SC, Tranchina D, Lamb TD, Jarvinen JL. Toward a unified model of vertebrate rod phototransduction. Vis Neurosci. 2005;22:417–36.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Gross AK, Wensel TG. Biochemical cascade of phototransduction. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. New York, Philadelphia /London: Saunders/Elsevier; 2011.Google Scholar
  58. 58.
    Pugh Jr EN, Lamb TD. Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta. 1993;1141:111–49.PubMedCrossRefGoogle Scholar
  59. 59.
    Chen CK. The vertebrate phototransduction cascade: amplification and termination mechanisms. Rev Physiol Biochem Pharmacol. 2005;154:101–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Burns ME, Baylor DA. Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu Rev Neurosci. 2001;24:779–805.PubMedCrossRefGoogle Scholar
  61. 61.
    Korenbrot JI. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res. 2012;31:442–66.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Kiser PD, Golczak M, Maeda A, Palczewski K. Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochim Biophys Acta. 1821;2012:137–51.Google Scholar
  63. 63.
    Ritter E, Zimmermann K, Heck M, Hofmann KP, Bartl FJ. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization. J Biol Chem. 2004;279:48102–11.PubMedCrossRefGoogle Scholar
  64. 64.
    Arshavsky VY, Lamb TD, Pugh Jr EN. G proteins and phototransduction. Annu Rev Physiol. 2002;64:153–87.PubMedCrossRefGoogle Scholar
  65. 65.
    Malinski JA, Wensel TG. Membrane stimulation of cGMP phosphodiesterase activation by transducin: comparison of phospholipid bilayers to rod outer segment membranes. Biochemistry. 1992;31:9502–12.PubMedCrossRefGoogle Scholar
  66. 66.
    Pittler SJ, Baehr W. The molecular genetics of retinal photoreceptor proteins involved in cGMP metabolism. Prog Clin Biol Res. 1991;362:33–66.PubMedGoogle Scholar
  67. 67.
    Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res. 2011;30:405–30.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Chen CK, Woodruff ML, Chen FS, et al. Modulation of mouse rod response decay by rhodopsin kinase and recoverin. J Neurosci. 2012;32:15998–6006.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Koch KW, Stryer L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature. 1988;334:64–6.PubMedCrossRefGoogle Scholar
  70. 70.
    He W, Cowan CW, Wensel TG. RGS9, a GTPase accelerator for phototransduction. Neuron. 1998;20:95–102.PubMedCrossRefGoogle Scholar
  71. 71.
    Cowan CW, Fariss RN, Sokal I, Palczewski K, Wensel TG. High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods. Proc Natl Acad Sci U S A. 1998;95:5351–6.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Fain GL, Matthews HR, Cornwall MC, Koutalos Y. Adaptation in vertebrate photoreceptors. Physiol Rev. 2001;81:117–51.PubMedGoogle Scholar
  73. 73.
    van Hateren JH, Lamb TD. The photocurrent response of human cones is fast and monophasic. BMC Neurosci. 2006;7:34.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Naarendorp F, Esdaille TM, Banden SM, Andrews-Labenski J, Gross OP, Pugh Jr EN. Dark light, rod saturation, and the absolute and incremental sensitivity of mouse cone vision. J Neurosci. 2010;30:12495–507.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Tamura T, Nakatani K, Yau KW. Calcium feedback and sensitivity regulation in primate rods. J Gen Physiol. 1991;98:95–130.PubMedCrossRefGoogle Scholar
  76. 76.
    Korenbrot JI. Speed, adaptation, and stability of the response to light in cone photoreceptors: the functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels. J Gen Physiol. 2012;139:31–56.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Trudeau MC, Zagotta WN. Dynamics of Ca2 + -calmodulin-dependent inhibition of rod cyclic nucleotide-gated channels measured by patch-clamp fluorometry. J Gen Physiol. 2004;124:211–23.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Sakurai K, Chen J, Kefalov VJ. Role of guanylyl cyclase modulation in mouse cone phototransduction. J Neurosci. 2011;31:7991–8000.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Grigoriev II, Senin II, Tikhomirova NK, et al. Synergetic effect of recoverin and calmodulin on regulation of rhodopsin kinase. Front Mol Neurosci. 2012;5:28.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Lamb TD, Pugh Jr EN. Dark adaptation and the retinoid cycle of vision. Prog Retin Eye Res. 2004;23:307–80.PubMedCrossRefGoogle Scholar
  81. 81.
    Fain GL. Adaptation of mammalian photoreceptors to background light: putative role for direct modulation of phosphodiesterase. Mol Neurobiol. 2011;44:374–82.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Thomas MM, Lamb TD. Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram. J Physiol. 1999;518(Pt 2):479–96.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Schiller PH. Parallel information processing channels created in the retina. Proc Natl Acad Sci U S A. 2010;107:17087–94.PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Schein S, Sterling P, Ngo IT, Huang TM, Herr S. Evidence that each S cone in macaque fovea drives one narrow-field and several wide-field blue-yellow ganglion cells. J Neurosci. 2004;24:8366–78.PubMedCrossRefGoogle Scholar
  85. 85.
    Trexler EB, Casti AR, Zhang Y. Nonlinearity and noise at the rod-rod bipolar cell synapse. Vis Neurosci. 2011;28:61–8.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Tsukamoto Y, Morigiwa K, Ueda M, Sterling P. Microcircuits for night vision in mouse retina. J Neurosci. 2001;21:8616–23.PubMedGoogle Scholar
  87. 87.
    Schiller PH, Sandell JH, Maunsell JH. Functions of the ON and OFF channels of the visual system. Nature. 1986;322:824–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Dacey DM. Circuitry for color coding in the primate retina. Proc Natl Acad Sci U S A. 1996;93:582–8.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Crook JD, Davenport CM, Peterson BB, Packer OS, Detwiler PB, Dacey DM. Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. J Neurosci. 2009;29:8372–87.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Sjostrand FS. Structure determines function of the retina, a neural center. 2. The second, third and fourth circuits. J Submicrosc Cytol Pathol. 1998;30:193–206.PubMedGoogle Scholar
  91. 91.
    Volgyi B, Xin D, Bloomfield SA. Feedback inhibition in the inner plexiform layer underlies the surround-mediated responses of AII amacrine cells in the mammalian retina. J Physiol. 2002;539:603–14.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Conway BR. Color vision, cones, and color-coding in the cortex. Neuroscientist. 2009;15:274–90.PubMedCrossRefGoogle Scholar
  93. 93.
    Gollisch T, Meister M. Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron. 2010;65:150–64.PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Petrusca D, Grivich MI, Sher A, et al. Identification and characterization of a Y-like primate retinal ganglion cell type. J Neurosci. 2007;27:11019–27.PubMedCrossRefGoogle Scholar
  95. 95.
    Famiglietti EV. Dendritic co-stratification of ON and ON-OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina. J Comp Neurol. 1992;324:322–35.PubMedCrossRefGoogle Scholar
  96. 96.
    Shen Y, Liu XL, Yang XL. N-methyl-D-aspartate receptors in the retina. Mol Neurobiol. 2006;34:163–79.PubMedCrossRefGoogle Scholar
  97. 97.
    Yang XL. Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol. 2004;73:127–50.PubMedCrossRefGoogle Scholar
  98. 98.
    Marc RE. Mapping glutamatergic drive in the vertebrate retina with a channel-permeant organic cation. J Comp Neurol. 1999;407:47–64.PubMedCrossRefGoogle Scholar
  99. 99.
    Gerber U. Metabotropic glutamate receptors in vertebrate retina. Doc Ophthalmol. 2003;106:83–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Wassle H. Parallel processing in the mammalian retina. Nat Rev Neurosci. 2004;5:747–57.PubMedCrossRefGoogle Scholar
  101. 101.
    Nelson RF. Glycinergic neurons process images. J Physiol. 2012;590:239–40.PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Witkovsky P. Dopamine and retinal function. Doc Ophthalmol. 2004;108:17–40.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang DQ, Zhou TR, McMahon DG. Functional heterogeneity of retinal dopaminergic neurons underlying their multiple roles in vision. J Neurosci. 2007;27:692–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Vaquero CF, Pignatelli A, Partida GJ, Ishida AT. A dopamine- and protein kinase A-dependent mechanism for network adaptation in retinal ganglion cells. J Neurosci. 2001;21:8624–35.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Hampson EC, Weiler R, Vaney DI. pH-gated dopaminergic modulation of horizontal cell gap junctions in mammalian retina. Proc Biol Sci. 1994;255:67–72.PubMedCrossRefGoogle Scholar
  106. 106.
    Taylor WR, Smith RG. The role of starburst amacrine cells in visual signal processing. Vis Neurosci. 2012;29:73–81.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Blom J, Giove T, Deshpande M, Eldred WD. Characterization of nitric oxide signaling pathways in the mouse retina. J Comp Neurol. 2012;520:4204–17.PubMedCrossRefGoogle Scholar
  108. 108.
    Eldred WD, Blute TA. Imaging of nitric oxide in the retina. Vision Res. 2005;45:3469–86.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Mills SL, Massey SC. Differential properties of two gap junctional pathways made by AII amacrine cells. Nature. 1995;377:734–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Brecha NC. Peptide and peptide receptor expression in function in the vertebrate retina. In: Chalupa LM, Werner J, editors. The visual neurosciences. Cambridge: MIT Press; 2004. p. 334–54.Google Scholar
  111. 111.
    Casini G, Catalani E, Dal Monte M, Bagnoli P. Functional aspects of the somatostatinergic system in the retina and the potential therapeutic role of somatostatin in retinal disease. Histol Histopathol. 2005;20:615–32.PubMedGoogle Scholar
  112. 112.
    Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res. 2012;31:407–41.PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Palacios-Prado N, Sonntag S, Skeberdis VA, Willecke K, Bukauskas FF. Gating, permselectivity and pH-dependent modulation of channels formed by connexin57, a major connexin of horizontal cells in the mouse retina. J Physiol. 2009;587:3251–69.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Thoreson WB, Babai N, Bartoletti TM. Feedback from horizontal cells to rod photoreceptors in vertebrate retina. J Neurosci. 2008;28:5691–5.PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Verweij J, Dacey DM, Peterson BB, Buck SL. Sensitivity and dynamics of rod signals in H1 horizontal cells of the macaque monkey retina. Vision Res. 1999;39:3662–72.PubMedCrossRefGoogle Scholar
  116. 116.
    Dacey DM, Lee BB, Stafford DK, Pokorny J, Smith VC. Horizontal cells of the primate retina: cone specificity without spectral opponency. Science. 1996;271:656–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Goodchild AK, Chan TL, Grunert U. Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina. Vis Neurosci. 1996;13:833–45.PubMedCrossRefGoogle Scholar
  118. 118.
    Ahnelt P, Kolb H. Horizontal cells and cone photoreceptors in human retina: a Golgi-electron microscopic study of spectral connectivity. J Comp Neurol. 1994;343:406–27.PubMedCrossRefGoogle Scholar
  119. 119.
    Kamermans M, Spekreijse H. The feedback pathway from horizontal cells to cones. A mini review with a look ahead. Vision Res. 1999;39:2449–68.PubMedCrossRefGoogle Scholar
  120. 120.
    Heidelberger R, Thoreson WB, Witkovsky P. Synaptic transmission at retinal ribbon synapses. Prog Retin Eye Res. 2005;24:682–720.PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Westheimer G. The ON-OFF dichotomy in visual processing: from receptors to perception. Prog Retin Eye Res. 2007;26:636–48.PubMedCrossRefGoogle Scholar
  122. 122.
    Nishimura Y, Rakic P. Development of the rhesus monkey retina: II. A three-dimensional analysis of the sequences of synaptic combinations in the inner plexiform layer. J Comp Neurol. 1987;262:290–313.PubMedCrossRefGoogle Scholar
  123. 123.
    Lameirao SV, Hamassaki DE, Rodrigues AR, DE Lima SM, Finlay BL, Silveira LC. Rod bipolar cells in the retina of the capuchin monkey (Cebus apella): characterization and distribution. Vis Neurosci. 2009;26:389–96.PubMedCrossRefGoogle Scholar
  124. 124.
    Kolb H, Marshak D. The midget pathways of the primate retina. Doc Ophthalmol. 2003;106:67–81.PubMedCrossRefGoogle Scholar
  125. 125.
    Field GD, Rieke F. Nonlinear signal transfer from mouse rods to bipolar cells and implications for visual sensitivity. Neuron. 2002;34:773–85.PubMedCrossRefGoogle Scholar
  126. 126.
    Boycott BB, Wassle H. Morphological classification of bipolar cells of the primate retina. Eur J Neurosci. 1991;3:1069–88.PubMedCrossRefGoogle Scholar
  127. 127.
    Haverkamp S, Haeseleer F, Hendrickson A. A comparison of immunocytochemical markers to identify bipolar cell types in human and monkey retina. Vis Neurosci. 2003;20:589–600.PubMedCrossRefGoogle Scholar
  128. 128.
    Pang JJ, Gao F, Wu SM. Stratum-by-stratum projection of light response attributes by retinal bipolar cells of Ambystoma. J Physiol. 2004;558:249–62.PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Hopkins JM, Boycott BB. The cone synapses of DB1 diffuse, DB6 diffuse and invaginating midget, bipolar cells of a primate retina. J Neurocytol. 1996;25:381–90.PubMedCrossRefGoogle Scholar
  130. 130.
    Trexler EB, Li W, Massey SC. Simultaneous contribution of two rod pathways to AII amacrine and cone bipolar cell light responses. J Neurophysiol. 2005;93:1476–85.PubMedCrossRefGoogle Scholar
  131. 131.
    Tsukamoto Y, Omi N. Some OFF bipolar cell types make contact with both rods and cones in macaque and mouse retinas. Front Neuroanat. 2014;8:1–13.CrossRefGoogle Scholar
  132. 132.
    Daw NW, Jensen RJ, Brunken WJ. Rod pathways in mammalian retinae. Trends Neurosci. 1990;13:110–5.PubMedCrossRefGoogle Scholar
  133. 133.
    Eglen SJ, Raven MA, Tamrazian E, Reese BE. Dopaminergic amacrine cells in the inner nuclear layer and ganglion cell layer comprise a single functional retinal mosaic. J Comp Neurol. 2003;466:343–55.PubMedCrossRefGoogle Scholar
  134. 134.
    Kolb H. Amacrine cells of the mammalian retina: neurocircuitry and functional roles. Eye (Lond). 1997;11(Pt 6):904–23.CrossRefGoogle Scholar
  135. 135.
    Kalloniatis M, Marc RE, Murry RF. Amino acid signatures in the primate retina. J Neurosci. 1996;16:6807–29.PubMedGoogle Scholar
  136. 136.
    Smith RG, Vardi N. Simulation of the AII amacrine cell of mammalian retina: functional consequences of electrical coupling and regenerative membrane properties. Vis Neurosci. 1995;12:851–60.PubMedCrossRefGoogle Scholar
  137. 137.
    Pang JJ, Gao F, Wu SM. Relative contributions of bipolar cell and amacrine cell inputs to light responses of ON, OFF and ON-OFF retinal ganglion cells. Vision Res. 2002;42:19–27.PubMedCrossRefGoogle Scholar
  138. 138.
    Roska B, Werblin F. Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nat Neurosci. 2003;6:600–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Manookin MB, Beaudoin DL, Ernst ZR, Flagel LJ, Demb JB. Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J Neurosci. 2008;28:4136–50.PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Molnar A, Werblin F. Inhibitory feedback shapes bipolar cell responses in the rabbit retina. J Neurophysiol. 2007;98:3423–35.PubMedCrossRefGoogle Scholar
  141. 141.
    Hsueh HA, Molnar A, Werblin FS. Amacrine to amacrine cell inhibition in the rabbit retina. J Neurophysiol. 2008;100:2077–88.PubMedCrossRefGoogle Scholar
  142. 142.
    Cook PB, McReynolds JS. Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nat Neurosci. 1998;1:714–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Flores-Herr N, Protti DA, Wassle H. Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. J Neurosci. 2001;21:4852–63.PubMedGoogle Scholar
  144. 144.
    Ichinose T, Lukasiewicz PD. Inner and outer retinal pathways both contribute to surround inhibition of salamander ganglion cells. J Physiol. 2005;565:517–35.PubMedCentralPubMedCrossRefGoogle Scholar
  145. 145.
    Dong CJ, Werblin FS. Temporal contrast enhancement via GABAC feedback at bipolar terminals in the tiger salamander retina. J Neurophysiol. 1998;79:2171–80.PubMedGoogle Scholar
  146. 146.
    Sagdullaev BT, McCall MA, Lukasiewicz PD. Presynaptic inhibition modulates spillover, creating distinct dynamic response ranges of sensory output. Neuron. 2006;50:923–35.PubMedCrossRefGoogle Scholar
  147. 147.
    Famiglietti Jr EV. On and off pathways through amacrine cells in mammalian retina: the synaptic connections of “starburst” amacrine cells. Vision Res. 1983;23:1265–79.PubMedCrossRefGoogle Scholar
  148. 148.
    Volgyi B, Xin D, Amarillo Y, Bloomfield SA. Morphology and physiology of the polyaxonal amacrine cells in the rabbit retina. J Comp Neurol. 2001;440:109–25.PubMedCrossRefGoogle Scholar
  149. 149.
    Famiglietti EV. Polyaxonal amacrine cells of rabbit retina: size and distribution of PA1 cells. J Comp Neurol. 1992;316:406–21.PubMedCrossRefGoogle Scholar
  150. 150.
    Masland RH. The fundamental plan of the retina. Nat Neurosci. 2001;4:877–86.PubMedCrossRefGoogle Scholar
  151. 151.
    Cao D, Lee BB, Sun H. Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway. J Vis. 2010;10:4.PubMedCentralPubMedCrossRefGoogle Scholar
  152. 152.
    Marc RE, Jones BW. Molecular phenotyping of retinal ganglion cells. J Neurosci. 2002;22:413–27.PubMedGoogle Scholar
  153. 153.
    Dacey DM, Peterson BB, Robinson FR, Gamlin PD. Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron. 2003;37:15–27.PubMedCrossRefGoogle Scholar
  154. 154.
    Hore VR, Troy JB, Eglen SJ. Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex. Vis Neurosci. 2012;29:283–99.PubMedCentralPubMedCrossRefGoogle Scholar
  155. 155.
    Buldyrev I, Taylor WR. Inhibitory mechanisms that generate centre and surround properties in ON and OFF brisk-sustained ganglion cells in the rabbit retina. J Physiol. 2013;591:303–25.PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Bolz J, Rosner G, Wassle H. Response latency of brisk-sustained (X) and brisk-transient (Y) cells in the cat retina. J Physiol. 1982;328:171–90.PubMedCentralPubMedCrossRefGoogle Scholar
  157. 157.
    Crook JD, Peterson BB, Packer OS, et al. The smooth monostratified ganglion cell: evidence for spatial diversity in the Y-cell pathway to the lateral geniculate nucleus and superior colliculus in the macaque monkey. J Neurosci. 2008;28:12654–71.PubMedCentralPubMedCrossRefGoogle Scholar
  158. 158.
    Stanford LR. X-cells in the cat retina: relationships between the morphology and physiology of a class of cat retinal ganglion cells. J Neurophysiol. 1987;58:940–64.PubMedGoogle Scholar
  159. 159.
    Hochstein S, Shapley RM. Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J Physiol. 1976;262:265–84.PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Silveira LC, Saito CA, Lee BB, et al. Morphology and physiology of primate M- and P-cells. Prog Brain Res. 2004;144:21–46.PubMedCrossRefGoogle Scholar
  161. 161.
    Croner LJ, Kaplan E. Receptive fields of P and M ganglion cells across the primate retina. Vision Res. 1995;35:7–24.PubMedCrossRefGoogle Scholar
  162. 162.
    Callaway EM. Structure and function of parallel pathways in the primate early visual system. J Physiol. 2005;566:13–9.PubMedCentralPubMedCrossRefGoogle Scholar
  163. 163.
    Dacey DM. Physiology, morphology and spatial densities of identified ganglion cell types in primate retina. Ciba Found Symp. 1994;184:12–28; discussion -34, 63–70.PubMedGoogle Scholar
  164. 164.
    Kaplan E, Shapley RM. The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci U S A. 1986;83:2755–7.PubMedCentralPubMedCrossRefGoogle Scholar
  165. 165.
    Schiller PH, Logothetis NK, Charles ER. Functions of the colour-opponent and broad-band channels of the visual system. Nature. 1990;343:68–70.PubMedCrossRefGoogle Scholar
  166. 166.
    Schiller PH, Slocum WM, Weiner VS. How the parallel channels of the retina contribute to depth processing. Eur J Neurosci. 2007;26:1307–21.PubMedCrossRefGoogle Scholar
  167. 167.
    Sun H, Smithson HE, Zaidi Q, Lee BB. Specificity of cone inputs to macaque retinal ganglion cells. J Neurophysiol. 2006;95:837–49.PubMedCentralPubMedCrossRefGoogle Scholar
  168. 168.
    Dacey DM, Packer OS. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr Opin Neurobiol. 2003;13:421–7.PubMedCrossRefGoogle Scholar
  169. 169.
    Dacey DM, Lee BB. The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature. 1994;367:731–5.PubMedCrossRefGoogle Scholar
  170. 170.
    Dacey DM. Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci. 2000;23:743–75.PubMedCrossRefGoogle Scholar
  171. 171.
    Dacey DM, Liao HW, Peterson BB, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. 2005;433:749–54.PubMedCrossRefGoogle Scholar
  172. 172.
    Vaney DI, Sivyer B, Taylor WR. Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci. 2012;13:194–208.PubMedGoogle Scholar
  173. 173.
    Olveczky BP, Baccus SA, Meister M. Segregation of object and background motion in the retina. Nature. 2003;423:401–8.PubMedCrossRefGoogle Scholar
  174. 174.
    Fried SI, Munch TA, Werblin FS. Mechanisms and circuitry underlying directional selectivity in the retina. Nature. 2002;420:411–4.PubMedCrossRefGoogle Scholar
  175. 175.
    Baccus SA, Olveczky BP, Manu M, Meister M. A retinal circuit that computes object motion. J Neurosci. 2008;28:6807–17.PubMedCrossRefGoogle Scholar
  176. 176.
    Munch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B. Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat Neurosci. 2009;12:1308–16.PubMedCrossRefGoogle Scholar
  177. 177.
    Pickard GE, Sollars PJ. Intrinsically photosensitive retinal ganglion cells. Rev Physiol Biochem Pharmacol. 2012;162:59–90.PubMedGoogle Scholar
  178. 178.
    Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295:1070–3.PubMedCrossRefGoogle Scholar
  179. 179.
    Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A. 1998;95:340–5.PubMedCentralPubMedCrossRefGoogle Scholar
  180. 180.
    Wong KW, Berson, DM. Ganglion-cell photoreceptors and non-image-forming vision. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. New York, Philadelphia /London: Saunders/Elsevier; 2011.Google Scholar
  181. 181.
    Terakita A, Tsukamoto H, Koyanagi M, Sugahara M, Yamashita T, Shichida Y. Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J Neurochem. 2008;105:883–90.PubMedCrossRefGoogle Scholar
  182. 182.
    Enezi J, Revell V, Brown T, Wynne J, Schlangen L, Lucas R. A “melanopic” spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights. J Biol Rhythms. 2011;26:314–23.PubMedCrossRefGoogle Scholar
  183. 183.
    Sexton T, Buhr E, Van Gelder RN. Melanopsin and mechanisms of non-visual ocular photoreception. J Biol Chem. 2012;287:1649–56.PubMedCentralPubMedCrossRefGoogle Scholar
  184. 184.
    Guler AD, Ecker JL, Lall GS, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature. 2008;453:102–5.PubMedCentralPubMedCrossRefGoogle Scholar
  185. 185.
    Robinson GA, Madison RD. Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft. Vision Res. 2004;44:2667–74.PubMedCrossRefGoogle Scholar
  186. 186.
    Li RS, Chen BY, Tay DK, Chan HH, Pu ML, So KF. Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci. 2006;47:2951–8.PubMedCrossRefGoogle Scholar
  187. 187.
    Chambille I. Retinal ganglion cells expressing the FOS protein after light stimulation in the Syrian hamster are relatively insensitive to neonatal treatment with monosodium glutamate. J Comp Neurol. 1998;392:458–67.PubMedCrossRefGoogle Scholar
  188. 188.
    Demb JB. Functional circuitry of visual adaptation in the retina. J Physiol. 2008;586:4377–84.PubMedCrossRefGoogle Scholar
  189. 189.
    Kim KJ, Rieke F. Slow Na + inactivation and variance adaptation in salamander retinal ganglion cells. J Neurosci. 2003;23:1506–16.PubMedGoogle Scholar
  190. 190.
    Manookin MB, Demb JB. Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron. 2006;50:453–64.PubMedCrossRefGoogle Scholar
  191. 191.
    Zaghloul KA, Manookin MB, Borghuis BG, Boahen K, Demb JB. Functional circuitry for peripheral suppression in Mammalian Y-type retinal ganglion cells. J Neurophysiol. 2007;97:4327–40.PubMedCrossRefGoogle Scholar
  192. 192.
    Tsacopoulos M, Poitry-Yamate CL, MacLeish PR, Poitry S. Trafficking of molecules and metabolic signals in the retina. Prog Retin Eye Res. 1998;17:429–42.PubMedCrossRefGoogle Scholar
  193. 193.
    Poitry-Yamate CL, Pournaras CJ. Metabolic interactions between neurons and glial cells. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. New York, Philadelphia /London: Saunders/Elsevier; 2011.Google Scholar
  194. 194.
    Aguiar E, Cheng HM, Lam DM. Real-time hexose monophosphate shunt activity in light- and dark-adapted rabbit retinas. Ophthalmic Res. 1987;19:298–302.PubMedCrossRefGoogle Scholar
  195. 195.
    Wang L, Tornquist P, Bill A. Glucose metabolism of the inner retina in pigs in darkness and light. Acta Physiol Scand. 1997;160:71–4.PubMedCrossRefGoogle Scholar
  196. 196.
    Wang L, Bill A. Effects of constant and flickering light on retinal metabolism in rabbits. Acta Ophthalmol Scand. 1997;75:227–31.PubMedCrossRefGoogle Scholar
  197. 197.
    Wang L, Tornquist P, Bill A. Glucose metabolism in pig outer retina in light and darkness. Acta Physiol Scand. 1997;160:75–81.PubMedCrossRefGoogle Scholar
  198. 198.
    Ames 3rd A, Walseth TF, Heyman RA, Barad M, Graeff RM, Goldberg ND. Light-induced increases in cGMP metabolic flux correspond with electrical responses of photoreceptors. J Biol Chem. 1986;261:13034–42.PubMedGoogle Scholar
  199. 199.
    Bringmann A, Pannicke T, Grosche J, et al. Muller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25:397–424.PubMedCrossRefGoogle Scholar
  200. 200.
    Reichenbach A, Derouiche A, Kirchhoff F. Morphology and dynamics of perisynaptic glia. Brain Res Rev. 2010;63:11–25.PubMedCrossRefGoogle Scholar
  201. 201.
    Omri S, Omri B, Savoldelli M, et al. The outer limiting membrane (OLM) revisited: clinical implications. Clin Ophthalmol. 2010;4:183–95.PubMedCentralPubMedGoogle Scholar
  202. 202.
    Heegaard S. Structure of the human vitreoretinal border region. Ophthalmologica. 1994;208:82–91.PubMedCrossRefGoogle Scholar
  203. 203.
    Robaszkiewicz J, Chmielewska K, Figurska M, Wierzbowska J, Stankiewicz A. Muller glial cells--the mediators of vascular disorders with vitreomacular interface pathology in diabetic maculopathy. Klin Oczna. 2010;112:328–32.PubMedGoogle Scholar
  204. 204.
    Poitry-Yamate C, Tsacopoulos M. Glial (Muller) cells take up and phosphorylate [3H]2-deoxy-D-glucose in mammalian retina. Neurosci Lett. 1991;122:241–4.PubMedCrossRefGoogle Scholar
  205. 205.
    Poitry-Yamate CL, Poitry S, Tsacopoulos M. Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci. 1995;15:5179–91.PubMedGoogle Scholar
  206. 206.
    Tsacopoulos M, Magistretti PJ. Metabolic coupling between glia and neurons. J Neurosci. 1996;16:877–85.PubMedGoogle Scholar
  207. 207.
    Poitry S, Poitry-Yamate C, Ueberfeld J, MacLeish PR, Tsacopoulos M. Mechanisms of glutamate metabolic signaling in retinal glial (Muller) cells. J Neurosci. 2000;20:1809–21.PubMedGoogle Scholar
  208. 208.
    Pfeiffer-Guglielmi B, Francke M, Reichenbach A, Fleckenstein B, Jung G, Hamprecht B. Glycogen phosphorylase isozyme pattern in mammalian retinal Muller (glial) cells and in astrocytes of retina and optic nerve. Glia. 2005;49:84–95.PubMedCrossRefGoogle Scholar
  209. 209.
    Coffe V, Carbajal RC, Salceda R. Glycogen metabolism in the rat retina. J Neurochem. 2004;88:885–90.PubMedCrossRefGoogle Scholar
  210. 210.
    Newman EA. Glial modulation of synaptic transmission in the retina. Glia. 2004;47:268–74.PubMedCentralPubMedCrossRefGoogle Scholar
  211. 211.
    Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev. 2006;86:1009–31.PubMedCrossRefGoogle Scholar
  212. 212.
    Newman EA, Zahs KR. Calcium waves in retinal glial cells. Science. 1997;275:844–7.PubMedCentralPubMedCrossRefGoogle Scholar
  213. 213.
    Puthussery T, Fletcher EL. P2X2 receptors on ganglion and amacrine cells in cone pathways of the rat retina. J Comp Neurol. 2006;496:595–609.PubMedCrossRefGoogle Scholar
  214. 214.
    Puthussery T, Yee P, Vingrys AJ, Fletcher EL. Evidence for the involvement of purinergic P2X receptors in outer retinal processing. Eur J Neurosci. 2006;24:7–19.PubMedCrossRefGoogle Scholar
  215. 215.
    Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci. 2006;26:2862–70.PubMedCentralPubMedCrossRefGoogle Scholar
  216. 216.
    Takano T, Tian GF, Peng W, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci. 2006;9:260–7.PubMedCrossRefGoogle Scholar
  217. 217.
    Yamanishi S, Katsumura K, Kobayashi T, Puro DG. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am J Physiol Heart Circ Physiol. 2006;290:H925–34.PubMedCrossRefGoogle Scholar
  218. 218.
    Pournaras CJ, Rungger-Brandle E, Riva CE, Hardarson SH, Stefansson E. Regulation of retinal blood flow in health and disease. Prog Retin Eye Res. 2008;27:284–330.PubMedCrossRefGoogle Scholar
  219. 219.
    Nagelhus EA, Mathiisen TM, Bateman AC, et al. Carbonic anhydrase XIV is enriched in specific membrane domains of retinal pigment epithelium, Muller cells, and astrocytes. Proc Natl Acad Sci U S A. 2005;102:8030–5.PubMedCentralPubMedCrossRefGoogle Scholar
  220. 220.
    Linser PJ, Sorrentino M, Moscona AA. Cellular compartmentalization of carbonic anhydrase-C and glutamine synthetase in developing and mature mouse neural retina. Brain Res. 1984;315:65–71.PubMedCrossRefGoogle Scholar
  221. 221.
    Wurm A, Lipp S, Pannicke T, et al. Endogenous purinergic signaling is required for osmotic volume regulation of retinal glial cells. J Neurochem. 2010;112:1261–72.PubMedCrossRefGoogle Scholar
  222. 222.
    Sarthy VP, Pignataro L, Pannicke T, et al. Glutamate transport by retinal Muller cells in glutamate/aspartate transporter-knockout mice. Glia. 2005;49:184–96.PubMedCrossRefGoogle Scholar
  223. 223.
    Biedermann B, Bringmann A, Reichenbach A. High-affinity GABA uptake in retinal glial (Muller) cells of the guinea pig: electrophysiological characterization, immunohistochemical localization, and modeling of efficiency. Glia. 2002;39:217–28.PubMedCrossRefGoogle Scholar
  224. 224.
    Gadea A, Lopez E, Hernandez-Cruz A, Lopez-Colome AM. Role of Ca2+ and calmodulin-dependent enzymes in the regulation of glycine transport in Muller glia. J Neurochem. 2002;80:634–45.PubMedCrossRefGoogle Scholar
  225. 225.
    Liu K, Wang Y, Yin Z, Weng C, Zeng Y. Changes in glutamate homeostasis cause retinal degeneration in Royal College of Surgeons rats. Int J Mol Med. 2013;31:1075–80.PubMedGoogle Scholar
  226. 226.
    Vardimon L, Ben-Dror I, Havazelet N, Fox LE. Molecular control of glutamine synthetase expression in the developing retina tissue. Dev Dyn. 1993;196:276–82.PubMedCrossRefGoogle Scholar
  227. 227.
    Bringmann A, Wiedemann P. Muller glial cells in retinal disease. Ophthalmologica. 2012;227:1–19.PubMedCrossRefGoogle Scholar
  228. 228.
    Fischer AJ, Schmidt M, Omar G, Reh TA. BMP4 and CNTF are neuroprotective and suppress damage-induced proliferation of Muller glia in the retina. Mol Cell Neurosci. 2004;27:531–42.PubMedCrossRefGoogle Scholar
  229. 229.
    Bringmann A, Iandiev I, Pannicke T, et al. Cellular signaling and factors involved in Muller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res. 2009;28:423–51.PubMedCrossRefGoogle Scholar
  230. 230.
    Dyer MA, Cepko CL. Control of Muller glial cell proliferation and activation following retinal injury. Nat Neurosci. 2000;3:873–80.PubMedCrossRefGoogle Scholar
  231. 231.
    Coorey NJ, Shen W, Chung SH, Zhu L, Gillies MC. The role of glia in retinal vascular disease. Clin Exp Optom. 2012;95:266–81.PubMedCrossRefGoogle Scholar
  232. 232.
    Grusser OJ. J.E. Purkyne’s contributions to the physiology of the visual, the vestibular and the oculomotor systems. Hum Neurobiol. 1984;3:129–44.PubMedGoogle Scholar
  233. 233.
    O’Leary DD, McLaughlin T. Mechanisms of retinotopic map development: ephs, ephrins, and spontaneous correlated retinal activity. Prog Brain Res. 2005;147:43–65.PubMedCrossRefGoogle Scholar
  234. 234.
    Kuffler SW, Fitzhugh R, Barlow HB. Maintained activity in the cat’s retina in light and darkness. J Gen Physiol. 1957;40:683–702.PubMedCentralPubMedCrossRefGoogle Scholar
  235. 235.
    Alpern M, Dudley D. The blue arcs of the retina. J Gen Physiol. 1966;49:405–21.PubMedCentralPubMedCrossRefGoogle Scholar
  236. 236.
    Grusser OJ, Hagner M. On the history of deformation phosphenes and the idea of internal light generated in the eye for the purpose of vision. Doc Ophthalmol. 1990;74:57–85.PubMedCrossRefGoogle Scholar
  237. 237.
    Magnussen S, Spillmann L, Sturzel F, Werner JS. Unveiling the foveal blue scotoma through an afterimage. Vision Res. 2004;44:377–83.PubMedCrossRefGoogle Scholar
  238. 238.
    Magnussen S, Spillmann L, Sturzel F, Werner JS. Filling-in of the foveal blue scotoma. Vision Res. 2001;41:2961–7.PubMedCentralPubMedCrossRefGoogle Scholar
  239. 239.
    Bone RA, Landrum JT. Macular pigment in Henle fiber membranes: a model for Haidinger’s brushes. Vision Res. 1984;24:103–8.PubMedCrossRefGoogle Scholar
  240. 240.
    Hemenger RP. Dichroism of the macular pigment and Haidinger’s brushes. J Opt Soc Am. 1982;72:734–7.PubMedCrossRefGoogle Scholar
  241. 241.
    Misson GP. A Mueller matrix model of Haidinger’s brushes. Ophthalmic Physiol Opt. 2003;23:441–7.PubMedCrossRefGoogle Scholar
  242. 242.
    Sinclair SH, Azar-Cavanagh M, Soper KA, Tuma RF, Mayrovitz HN. Investigation of the source of the blue field entoptic phenomenon. Invest Ophthalmol Vis Sci. 1989;30:668–73.PubMedGoogle Scholar
  243. 243.
    Loebl M, Riva CE. Macular circulation and the flying corpuscles phenomenon. Ophthalmology. 1978;85:911–7.PubMedCrossRefGoogle Scholar
  244. 244.
    Williamson TH, Harris A. Ocular blood flow measurement. Br J Ophthalmol. 1994;78:939–45.PubMedCentralPubMedCrossRefGoogle Scholar
  245. 245.
    Talbot EM, Murdoch JR, Keating D. The Purkinje vascular entoptic test: a halogen light gives better results. Eye (Lond). 1992;6(Pt 3):322–5.CrossRefGoogle Scholar
  246. 246.
    Coppola D, Purves D. The extraordinarily rapid disappearance of entopic images. Proc Natl Acad Sci U S A. 1996;93:8001–4.PubMedCentralPubMedCrossRefGoogle Scholar
  247. 247.
    Ramachandran VS, Gregory RL, Aiken W. Perceptual fading of visual texture borders. Vision Res. 1993;33:717–21.PubMedCrossRefGoogle Scholar
  248. 248.
    Troxler D, Himlyk Schmidt A. Uber das Verschwinden gegebener Geganstande innerhalb unseres Gesichtskreise. In: Ophthalmologie Bibliothek. Jena: Springer; 1804. p. 431–573.Google Scholar
  249. 249.
    Chen H, Chen Y, Horn R, et al. Clinical features of autosomal dominant retinitis pigmentosa associated with a Rhodopsin mutation. Ann Acad Med Singapore. 2006;35:411–5.PubMedGoogle Scholar
  250. 250.
    Phelan JK, Bok D. A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. Mol Vis. 2000;6:116–24.PubMedGoogle Scholar
  251. 251.
    Neveling K, Collin RW, Gilissen C, et al. Next-generation genetic testing for retinitis pigmentosa. Hum Mutat. 2012;33:963–72.PubMedCentralPubMedCrossRefGoogle Scholar
  252. 252.
    Boon CJ, den Hollander AI, Hoyng CB, Cremers FP, Klevering BJ, Keunen JE. The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Retin Eye Res. 2008;27:213–35.PubMedCrossRefGoogle Scholar
  253. 253.
    Michaelides M, Holder GE, Bradshaw K, Hunt DM, Moore AT. Cone-rod dystrophy, intrafamilial variability, and incomplete penetrance associated with the R172W mutation in the peripherin/RDS gene. Ophthalmology. 2005;112:1592–8.PubMedCrossRefGoogle Scholar
  254. 254.
    Anand S, Sheridan E, Cassidy F, et al. Macular dystrophy associated with the Arg172Trp substitution in peripherin/RDS: genotype-phenotype correlation. Retina. 2009;29:682–8.PubMedCrossRefGoogle Scholar
  255. 255.
    Keen TJ, Inglehearn CF. Mutations and polymorphisms in the human peripherin-RDS gene and their involvement in inherited retinal degeneration. Hum Mutat. 1996;8:297–303.PubMedCrossRefGoogle Scholar
  256. 256.
    Strom TM, Nyakatura G, Apfelstedt-Sylla E, et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet. 1998;19:260–3.PubMedCrossRefGoogle Scholar
  257. 257.
    Morgans CW, Bayley PR, Oesch NW, Ren G, Akileswaran L, Taylor WR. Photoreceptor calcium channels: insight from night blindness. Vis Neurosci. 2005;22:561–8.PubMedCrossRefGoogle Scholar
  258. 258.
    Cideciyan AV, Zhao X, Nielsen L, Khani SC, Jacobson SG, Palczewski K. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Proc Natl Acad Sci U S A. 1998;95:328–33.PubMedCentralPubMedCrossRefGoogle Scholar
  259. 259.
    Nakazawa M, Wada Y, Fuchs S, Gal A, Tamai M. Oguchi disease: phenotypic characteristics of patients with the frequent 1147delA mutation in the arrestin gene. Retina. 1997;17:17–22.PubMedCrossRefGoogle Scholar
  260. 260.
    Michaelides M, Hunt DM, Moore AT. The cone dysfunction syndromes. Br J Ophthalmol. 2004;88:291–7.PubMedCentralPubMedCrossRefGoogle Scholar
  261. 261.
    Brown RL, Strassmaier T, Brady JD, Karpen JW. The pharmacology of cyclic nucleotide-gated channels: emerging from the darkness. Curr Pharm Des. 2006;12:3597–613.PubMedCentralPubMedCrossRefGoogle Scholar
  262. 262.
    Fletcher EL, Phipps JA, Wilkinson-Berka JL. Dysfunction of retinal neurons and glia during diabetes. Clin Exp Optom. 2005;88:132–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Simon E. Skalicky
    • 1
  1. 1.University of SydneySydneyAustralia

Personalised recommendations