The Vitreous

  • Simon E. Skalicky


The vitreous is an almost spherical transparent gel that makes up 80 % of globe volume [1] (Fig. 7.1).


Hyaluronic Acid Collagen Fibril Retinal Vessel Internal Limit Membrane Retinal Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lund-Andersen H, Sander B. The vitreous. In: Levin LA, Nillson SFE, Ver Hoerve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. New York, Philadelphia/ London: Elsevier; 2011.Google Scholar
  2. 2.
    Comhaire-Poutchinian Y. Embryology – anatomy – developments and aging of the vitreous. Bull Soc Belge Ophtalmol. 1995;258:11–30.PubMedGoogle Scholar
  3. 3.
    Sang DN. Embryology of the vitreous. Congenital and developmental abnormalities. Bull Soc Belge Ophtalmol. 1987;223(Pt 1):11–35.PubMedGoogle Scholar
  4. 4.
    Swann DA. Chemistry and biology of the vitreous body. Int Rev Exp Pathol. 1980;22:1–64.PubMedGoogle Scholar
  5. 5.
    Sebag J, Balazs EA. Morphology and ultrastructure of human vitreous fibers. Invest Ophthalmol Vis Sci. 1989;30:1867–71.PubMedGoogle Scholar
  6. 6.
    Sebag J. Age-related differences in the human vitreoretinal interface. Arch Ophthalmol. 1991;109:966–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Heegaard S. Structure of the human vitreoretinal border region. Ophthalmologica. 1994;208:82–91.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang J, McLeod D, Henson DB, Bishop PN. Age-dependent changes in the basal retinovitreous adhesion. Invest Ophthalmol Vis Sci. 2003;44:1793–800.CrossRefPubMedGoogle Scholar
  9. 9.
    Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body. Part I: viscoelasticity of human vitreous. Biorheology. 1992;29:521–33.PubMedGoogle Scholar
  10. 10.
    Berman E. Biochemistry of the eye. New York: Plenum Press; 1991.Google Scholar
  11. 11.
    Bos KJ, Holmes DF, Meadows RS, Kadler KE, McLeod D, Bishop PN. Collagen fibril organisation in mammalian vitreous by freeze etch/rotary shadowing electron microscopy. Micron. 2001;32:301–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Bishop PN. Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res. 2000;19:323–44.CrossRefPubMedGoogle Scholar
  13. 13.
    Brewton RG, Mayne R. Mammalian vitreous humor contains networks of hyaluronan molecules: electron microscopic analysis using the hyaluronan-binding region (G1) of aggrecan and link protein. Exp Cell Res. 1992;198:237–49.CrossRefPubMedGoogle Scholar
  14. 14.
    Swann DA, Constable IJ. Vitreous structure. I. Distribution of hyaluronate and protein. Invest Ophthalmol. 1972;11:159–63.PubMedGoogle Scholar
  15. 15.
    Sardar DK, Swanland GY, Yow RM, Thomas RJ, Tsin AT. Optical properties of ocular tissues in the near infrared region. Lasers Med Sci. 2007;22:46–52.CrossRefPubMedGoogle Scholar
  16. 16.
    Theocharis DA, Skandalis SS, Noulas AV, Papageorgakopoulou N, Theocharis AD, Karamanos NK. Hyaluronan and chondroitin sulfate proteoglycans in the supramolecular organization of the mammalian vitreous body. Connect Tissue Res. 2008;49:124–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Lund-Andersen H, Krogsaa B, la Cour M, Larsen J. Quantitative vitreous fluorophotometry applying a mathematical model of the eye. Invest Ophthalmol Vis Sci. 1985;26:698–710.PubMedGoogle Scholar
  18. 18.
    Palestine AG, Brubaker RF. Pharmacokinetics of fluorescein in the vitreous. Invest Ophthalmol Vis Sci. 1981;21:542–9.PubMedGoogle Scholar
  19. 19.
    Loftsson T, Sigurdsson HH, Konradsdottir F, Gisladottir S, Jansook P, Stefansson E. Topical drug delivery to the posterior segment of the eye: anatomical and physiological considerations. Pharmazie. 2008;63:171–9.PubMedGoogle Scholar
  20. 20.
    Barbazetto IA, Liang J, Chang S, Zheng L, Spector A, Dillon JP. Oxygen tension in the rabbit lens and vitreous before and after vitrectomy. Exp Eye Res. 2004;78:917–24.CrossRefPubMedGoogle Scholar
  21. 21.
    Shui YB, Holekamp NM, Kramer BC, et al. The gel state of the vitreous and ascorbate-dependent oxygen consumption: relationship to the etiology of nuclear cataracts. Arch Ophthalmol. 2009;127:475–82.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Fatt I. Flow and diffusion in the vitreous body of the eye. Bull Math Biol. 1975;37:85–90.CrossRefPubMedGoogle Scholar
  23. 23.
    Newman EA. Regulation of potassium levels by Muller cells in the vertebrate retina. Can J Physiol Pharmacol. 1987;65:1028–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes. Eye (Lond). 2008;22:1214–22.CrossRefGoogle Scholar
  25. 25.
    Akiba J, Ueno N, Chakrabarti B. Age-related changes in the molecular properties of vitreous collagen. Curr Eye Res. 1993;12:951–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Akiba J, Ueno N, Chakrabarti B. Mechanisms of photo-induced vitreous liquefaction. Curr Eye Res. 1994;13:505–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Armand G, Chakrabarti B. Conformational differences between hyaluronates of gel and liquid human vitreous: fractionation and circular dichroism studies. Curr Eye Res. 1987;6:445.CrossRefPubMedGoogle Scholar
  28. 28.
    Sebag J. Ageing of the vitreous. Eye (Lond). 1987;1(Pt 2):254–62.CrossRefGoogle Scholar
  29. 29.
    Holekamp NM, Shui YB, Beebe DC. Vitrectomy surgery increases oxygen exposure to the lens: a possible mechanism for nuclear cataract formation. Am J Ophthalmol. 2005;139:302–10.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Simon E. Skalicky
    • 1
  1. 1.University of SydneySydneyAustralia

Personalised recommendations