The Iris and Pupil

  • Simon E. Skalicky


The iris is the most anterior portion of the uveal tract [1].


Efferent Pathway Ciliary Ganglion Pupillary Constriction Pretectal Nucleus Iris Pigment Epithelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Snell RS, Lemp MA. Clinical anatomy of the eye. Oxford/England: Blackwell Science Inc; 1998.Google Scholar
  2. 2.
    Davis-Silberman N, Ashery-Padan R. Iris development in vertebrates; genetic and molecular considerations. Brain Res. 2008;1192:17–28.CrossRefPubMedGoogle Scholar
  3. 3.
    Ferrari PA, Koch WE. Development of the iris in the chicken embryo. I. A study of growth and histodifferentiation utilizing immunocytochemistry for muscle differentiation. J Embryol Exp Morphol. 1984;81:153–67.PubMedGoogle Scholar
  4. 4.
    Kikuchi M, Hayashi R, Kanakubo S, et al. Neural crest-derived multipotent cells in the adult mouse iris stroma. Genes Cells. 2011;16:273–81.CrossRefPubMedGoogle Scholar
  5. 5.
    Kardon R. Regulation of light through the pupil. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, (editors). Adler’s physiology of the eye. 11th ed. New York/Philadelphia: Saunders, Elsevier; 2011.Google Scholar
  6. 6.
    Bill A. The blood-aqueous barrier. Trans Ophthalmol Soc U K. 1986;105(Pt 2):149–55.PubMedGoogle Scholar
  7. 7.
    Imesch PD, Wallow IH, Albert DM. The color of the human eye: a review of morphologic correlates and of some conditions that affect iridial pigmentation. Surv Ophthalmol. 1997;41 Suppl 2:S117–23.CrossRefPubMedGoogle Scholar
  8. 8.
    Hanani M, Brading AF. Electrical coupling in smooth muscles. Is it universal? J Basic Clin Physiol Pharmacol. 2000;11:321–30.CrossRefPubMedGoogle Scholar
  9. 9.
    Thumann G. Development and cellular functions of the iris pigment epithelium. Surv Ophthalmol. 2001;45:345–54.CrossRefPubMedGoogle Scholar
  10. 10.
    Watson AB, Yellott JI. A unified formula for light-adapted pupil size. J Vis. 2012;12:12.CrossRefPubMedGoogle Scholar
  11. 11.
    Jacobs RJ, Bailey IL, Bullimore MA. Artificial pupils and Maxwellian view. Appl Optics. 1992;31:3668–77.CrossRefGoogle Scholar
  12. 12.
    Yamaguchi T, Negishi K, Ono T, et al. Feasibility of spherical aberration correction with aspheric intraocular lenses in cataract surgery based on individual pupil diameter. J Cataract Refract Surg. 2009;35:1725–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Smith G. Angular diameter of defocus blur discs. Am J Optom Physiol Opt. 1982;59:885–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Hickenbotham A, Tiruveedhula P, Roorda A. Comparison of spherical aberration and small-pupil profiles in improving depth of focus for presbyopic corrections. J Cataract Refract Surg. 2012;38:2071–9.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Silver DM, Quigley HA. Aqueous flow through the iris-lens channel: estimates of differential pressure between the anterior and posterior chambers. J Glaucoma. 2004;13:100–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Kardon R. Pupillary light reflex. Curr Opin Ophthalmol. 1995;6:20–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Gooley JJ, Ho Mien I, St Hilaire MA, et al. Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans. J Neurosci. 2012;32:14242–53.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    ten Doesschate J, Alpern M. Response of the pupil to steady-state retinal illumination: contribution by cones. Science. 1965;149:989–91.CrossRefPubMedGoogle Scholar
  19. 19.
    Baver SB, Pickard GE, Sollars PJ, Pickard GE. Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci. 2008;27:1763–70.CrossRefPubMedGoogle Scholar
  20. 20.
    Guler AD, Ecker JL, Lall GS, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature. 2008;453:102–5.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kozicz T, Bittencourt JC, May PJ, et al. The Edinger-Westphal nucleus: a historical, structural, and functional perspective on a dichotomous terminology. J Comp Neurol. 2011;519:1413–34.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Neuhuber W, Schrodl F. Autonomic control of the eye and the iris. Auton Neurosci. 2011;165:67–79.CrossRefPubMedGoogle Scholar
  23. 23.
    Barbur JL, Harlow AJ, Sahraie A. Pupillary responses to stimulus structure, colour and movement. Ophthalmic Physiol Opt. 1992;12:137–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Bergamin O, Kardon RH. Greater pupillary escape differentiates central from peripheral visual field loss. Ophthalmology. 2002;109:771–80.CrossRefPubMedGoogle Scholar
  25. 25.
    Schor CM. A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses. Optom Vis Sci. 1992;69:258–69.CrossRefPubMedGoogle Scholar
  26. 26.
    Bando T, Hara N, Takagi M, Yamamoto K, Toda H. Roles of the lateral suprasylvian cortex in convergence eye movement in cats. Prog Brain Res. 1996;112:143–56.CrossRefPubMedGoogle Scholar
  27. 27.
    Mays LE, Gamlin PD. Neuronal circuitry controlling the near response. Curr Opin Neurobiol. 1995;5:763–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Gamlin PD. Subcortical neural circuits for ocular accommodation and vergence in primates. Ophthalmic Physiol Opt. 1999;19:81–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Erichsen JT, May PJ. The pupillary and ciliary components of the cat Edinger-Westphal nucleus: a transsynaptic transport investigation. Vis Neurosci. 2002;19:15–29.CrossRefPubMedGoogle Scholar
  30. 30.
    Koss MC. Pupillary dilation as an index of central nervous system alpha 2-adrenoceptor activation. J Pharmacol Methods. 1986;15:1–19.CrossRefPubMedGoogle Scholar
  31. 31.
    Phillips MA, Szabadi E, Bradshaw CM. Comparison of the effects of clonidine and yohimbine on pupillary diameter at different illumination levels. Br J Clin Pharmacol. 2000;50:65–8.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Besada E, Reed K, Najman P, Shechtman D, Hardigan P. Pupillometry study of brimonidine tartrate 0.2% and apraclonidine 0.5%. J Clin Pharmacol. 2011;51:1690–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Szabadi E. Modulation of physiological reflexes by pain: role of the locus coeruleus. Front Integr Neurosci. 2012;6:94.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Lai JS, Gangwani RA. Medication-induced acute angle closure attack. Hong Kong Med J. 2012;18:139–45.PubMedGoogle Scholar
  35. 35.
    Almegard B, Stjernschantz J, Bill A. Cholecystokinin contracts isolated human and monkey iris sphincters; a study with CCK receptor antagonists. Eur J Pharmacol. 1992;211:183–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Ehlers JP, Shah CP, Fenton GL, et al. The Wills eye manual. 5th ed. New York/Philadelphia: Lippincott Williams & Wilkins; 2008.Google Scholar
  37. 37.
    Patel S, Ilsen PF. Acquired Horner’s syndrome: clinical review. Optometry. 2003;74:245–56.PubMedGoogle Scholar
  38. 38.
    Kardon RH, Denison CE, Brown CK, Thompson HS. Critical evaluation of the cocaine test in the diagnosis of Horner’s syndrome. Arch Ophthalmol. 1990;108:384–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Mughal M, Longmuir R. Current pharmacologic testing for Horner syndrome. Curr Neurol Neurosci Rep. 2009;9:384–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Brown SM, Aouchiche R, Freedman KA. The utility of 0.5 percent apraclonidine in the diagnosis of Horner syndrome. Arch Ophthalmol. 2003;121:1201–3.CrossRefPubMedGoogle Scholar
  41. 41.
    Wilhelm H. Disorders of the pupil. Handb Clin Neurol. 2011;102:427–66.CrossRefPubMedGoogle Scholar
  42. 42.
    Kardon RH, Corbett JJ, Thompson HS. Segmental denervation and reinnervation of the iris sphincter as shown by infrared videographic transillumination. Ophthalmology. 1998;105:313–21.CrossRefPubMedGoogle Scholar
  43. 43.
    Bourgon P, Pilley FJ, Thompson HS. Cholinergic supersensitivity of the iris sphincter in Adie’s tonic pupil. Am J Ophthalmol. 1978;85:373–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Younge BR, Buski ZJ. Tonic pupil: a simple screening test. Can J Ophthalmol. 1976;11:295–9.PubMedGoogle Scholar
  45. 45.
    Thompson HS, Corbett JJ, Cox TA. How to measure the relative afferent pupillary defect. Surv Ophthalmol. 1981;26:39–42.CrossRefPubMedGoogle Scholar
  46. 46.
    Bremner FD. Pupil assessment in optic nerve disorders. Eye. 2004;18:1175–81.CrossRefPubMedGoogle Scholar
  47. 47.
    Bell RA, Waggoner PM, Boyd WM, Akers RE, Yee CE. Clinical grading of relative afferent pupillary defects. Arch Ophthalmol. 1993;111:938–42.CrossRefPubMedGoogle Scholar
  48. 48.
    Thompson HS. Light-near dissociation of the pupil. Ophthalmologica. 1984;189:21–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Simon E. Skalicky
    • 1
  1. 1.University of SydneySydneyAustralia

Personalised recommendations