Advertisement

Color Vision

  • Simon E. Skalicky

Abstract

Color is a subjective sensory phenomenon, not a physical attribute of an object.

Keywords

Receptive Field Color Vision Color Constancy Opsin Gene Color Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Leong J. Number of colors distinguishable by the human eye. In: Hypertextbook, (ed.). Wyszecki, Gunter. Color. Chicago: World Book Inc, 2006:824.Google Scholar
  2. 2.
    Newton I. New theory about light and colors. Philos Trans R Soc Lond. 1671;6:3075–87.CrossRefGoogle Scholar
  3. 3.
    Land EH. Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. Proc Natl Acad Sci U S A. 1983;80:5163–9.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Hansen T, Walter S, Gegenfurtner KR. Effects of spatial and temporal context on color categories and color constancy. J Vis. 2007;7:2.CrossRefPubMedGoogle Scholar
  5. 5.
    Abney W. On the changes in hue of spectrum colors by dilution with white light. Proc R Soc Lond. 1910;82:120–7.CrossRefGoogle Scholar
  6. 6.
    Mizokami Y, Werner J, Crognale M, Webster M. Nonlinearities in color coding: compensating color appearance for the eye’s spectral sensitivity. J Vis. 2006;6:996–1007.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Bimler DL, Paramei GV. Bezold-Brucke effect in normal trichromats and protanopes. J Opt Soc Am A Opt Image Sci Vis. 2005;22:2120–36.CrossRefPubMedGoogle Scholar
  8. 8.
    von Bezold W. Die Farbenlehre in Hinblick auf Kunst und Kunstgewerbe. Braunschweig. 1874.Google Scholar
  9. 9.
    Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature. 1999;397:520–2.CrossRefPubMedGoogle Scholar
  10. 10.
    Curcio CA, Allen KA, Sloan KR, et al. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol. 1991;312:610–24.CrossRefPubMedGoogle Scholar
  11. 11.
    Young T. On the theory of light and colours. Philos Trans R Soc (Lond). 1802;92:12–48.CrossRefGoogle Scholar
  12. 12.
    Dacey DM, Packer OS. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr Opin Neurobiol. 2003;13:421–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Sun H, Smithson HE, Zaidi Q, Lee BB. Specificity of cone inputs to macaque retinal ganglion cells. J Neurophysiol. 2006;95:837–49.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Dacey DM. Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci. 2000;23:743–75.CrossRefPubMedGoogle Scholar
  15. 15.
    Lennie P, D’Zmura M. Mechanisms of color vision. Crit Rev Neurobiol. 1988;3:333–400.PubMedGoogle Scholar
  16. 16.
    Chatterjee S, Callaway EM. Parallel colour-opponent pathways to primary visual cortex. Nature. 2003;426:668–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Dacey DM, Lee BB. The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature. 1994;367:731–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Dacey DM, Liao HW, Peterson BB, et al. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. 2005;433:749–54.CrossRefPubMedGoogle Scholar
  19. 19.
    Tailby C, Solomon SG, Lennie P. Functional asymmetries in visual pathways carrying S-cone signals in macaque. J Neurosci Off J Soc Neurosci. 2008;28:4078–87.CrossRefGoogle Scholar
  20. 20.
    Crook JD, Peterson BB, Packer OS, Robinson FR, Troy JB, Dacey DM. Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina. J Neurosci Off J Soc Neurosci. 2008;28:11277–91.CrossRefGoogle Scholar
  21. 21.
    Diller L, Packer OS, Verweij J, McMahon MJ, Williams DR, Dacey DM. L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina. J Neurosci Off J Soc Neurosci. 2004;24:1079–88.CrossRefGoogle Scholar
  22. 22.
    Martin PR. Colour through the thalamus. Clin Exp Optom J Aust Optom Assoc. 2004;87:249–57.CrossRefGoogle Scholar
  23. 23.
    Conway BR. Color vision, cones, and color-coding in the cortex. Neuroscientist Rev J Bringing Neurobiol Neurol Psychiatry. 2009;15:274–90.Google Scholar
  24. 24.
    Martin PR, White AJ, Goodchild AK, Wilder HD, Sefton AE. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur J Neurosci. 1997;9:1536–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Livingstone MS, Hubel DH. Anatomy and physiology of a color system in the primate visual cortex. J Neurosci Off J Soc Neurosci. 1984;4:309–56.Google Scholar
  26. 26.
    Victor JD, Purpura K, Katz E, Mao B. Population encoding of spatial frequency, orientation, and color in macaque V1. J Neurophysiol. 1994;72:2151–66.PubMedGoogle Scholar
  27. 27.
    Wade A, Augath M, Logothetis N, Wandell B. fMRI measurements of color in macaque and human. J Vis. 2008;8:6. 1–19.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Johnson EN, Hawken MJ, Shapley R. The orientation selectivity of color-responsive neurons in macaque V1. J Neurosci Off J Soc Neurosci. 2008;28:8096–106.CrossRefGoogle Scholar
  29. 29.
    Friedman HS, Zhou H, von der Heydt R. The coding of uniform colour figures in monkey visual cortex. J Physiol. 2003;548:593–613.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Shapley R, Hawken MJ. Color in the cortex: single- and double-opponent cells. Vision Res. 2011;51:701–17.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Horwitz GD, Chichilnisky EJ, Albright TD. Cone inputs to simple and complex cells in V1 of awake macaque. J Neurophysiol. 2007;97:3070–81.CrossRefPubMedGoogle Scholar
  32. 32.
    Wachtler T, Sejnowski TJ, Albright TD. Representation of color stimuli in awake macaque primary visual cortex. Neuron. 2003;37:681–91.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Kentridge RW, Heywood CA, Weiskrantz L. Color contrast processing in human striate cortex. Proc Natl Acad Sci U S A. 2007;104:15129–31.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Danilova MV, Mollon JD. The comparison of spatially separated colours. Vision Res. 2006;46:823–36.CrossRefPubMedGoogle Scholar
  35. 35.
    Thorell LG, De Valois RL, Albrecht DG. Spatial mapping of monkey V1 cells with pure color and luminance stimuli. Vision Res. 1984;24:751–69.CrossRefPubMedGoogle Scholar
  36. 36.
    Lu HD, Roe AW. Functional organization of color domains in V1 and V2 of macaque monkey revealed by optical imaging. Cereb Cortex. 2008;18:516–33.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Shipp S, Zeki S. The functional organization of area V2, I: specialization across stripes and layers. Vis Neurosci. 2002;19:187–210.PubMedGoogle Scholar
  38. 38.
    Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988;240:740–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Solomon SG, Lennie P. Chromatic gain controls in visual cortical neurons. J Neurosci Off J Soc Neurosci. 2005;25:4779–92.CrossRefGoogle Scholar
  40. 40.
    Moutoussis K, Zeki S. Responses of spectrally selective cells in macaque area V2 to wavelengths and colors. J Neurophysiol. 2002;87:2104–12.PubMedGoogle Scholar
  41. 41.
    Xiao Y, Wang Y, Felleman DJ. A spatially organized representation of colour in macaque cortical area V2. Nature. 2003;421:535–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Schiller PH. On the specificity of neurons and visual areas. Behav Brain Res. 1996;76:21–35.CrossRefPubMedGoogle Scholar
  43. 43.
    Tanigawa H, Lu HD, Roe AW. Functional organization for color and orientation in macaque V4. Nat Neurosci. 2010;13:1542–8.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Roe AW, Chelazzi L, Connor CE, et al. Toward a unified theory of visual area V4. Neuron. 2012;74:12–29.CrossRefPubMedGoogle Scholar
  45. 45.
    Birch J. Efficiency of the Ishihara test for identifying red-green colour vision deficiency. Ophthalmic Physiol Opt. 1997;17:403–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Hardy LH, Rand G, Rittler MC. The H-R-R Polychromatic plates. J Opt Soc Am. 1954;44:509–23.CrossRefGoogle Scholar
  47. 47.
    Farnsworth D. The Farnsworth-Munsell100 Hue Test for the examination of color vision. Baltimore: Munsell Color Company; 1949, revised 1957.Google Scholar
  48. 48.
    Dain SJ. Clinical colour vision tests. Clin Exp Optom J Aust Optom Assoc. 2004;87:276–93.CrossRefGoogle Scholar
  49. 49.
    Linksz A. The Farnsworth panel D-15 test. Am J Ophthalmol. 1966;62:27–37.CrossRefPubMedGoogle Scholar
  50. 50.
    Rayleigh L. Experiments on colour. Nature. 1881;25:64–6.CrossRefGoogle Scholar
  51. 51.
    Neitz J, Mancuso K, Kuchenbecker JA, Neitz M. Colour vision. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. Edinburgh: Saunders, Elsevier; 2011.Google Scholar
  52. 52.
    Nathans J, Thomas D, Hogness DS. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986;232:193–202.CrossRefPubMedGoogle Scholar
  53. 53.
    Vollrath D, Nathans J, Davis RW. Tandem array of human visual pigment genes at Xq28. Science. 1988;240:1669–72.CrossRefPubMedGoogle Scholar
  54. 54.
    Neitz J, Neitz M. The genetics of normal and defective color vision. Vision Res. 2011;51:633–51.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Weitz CJ, Miyake Y, Shinzato K, et al. Human tritanopia associated with two amino acid substitutions in the blue sensitive opsin. Am J Hum Genet. 1992;50:498–507.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Gunther KL, Neitz J, Neitz M. A novel mutation in the short-wavelength sensitive cone pigment gene associated with a tritan color vision defect. Vis Neurosci. 2006;23:403–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Kalmus H. The familial distribution of congenital tritanopia. Ann Hum Genet. 1955;20:39–56.CrossRefPubMedGoogle Scholar
  58. 58.
    Birch J. A practical guide for colour-vision examination: report of the Standardization Committee of the International Research Group on Colour-Vision Deficiencies. Ophthalmic Physiol Opt. 1985;5:265–85.CrossRefPubMedGoogle Scholar
  59. 59.
    Swanson WH, Cohen JM. Color vision. Ophthalmol Clin North Am. 2003;16:179–203.CrossRefPubMedGoogle Scholar
  60. 60.
    Simunovic MP, Moore AT. The cone dystrophies. Eye. 1998;12(Pt 3b):553–65.CrossRefPubMedGoogle Scholar
  61. 61.
    Michaelides M, Hardcastle AJ, Hunt DM, Moore AT. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol. 2006;51:232–58.CrossRefPubMedGoogle Scholar
  62. 62.
    Sharpe LT, Stockman A, Jagle H, Nathans J. Opsin genes, cone photopigments, color vision and color blindness. In: Gegenfurtner KR, Sharpe L, editors. Color vision. Cambridge: Cambridge University Press; 1999.Google Scholar
  63. 63.
    Simunovic MP. Colour vision deficiency. Eye. 2010;24:747–55.CrossRefPubMedGoogle Scholar
  64. 64.
    Neitz J, Neitz M, Kainz PM. Visual pigment gene structure and the severity of color vision defects. Science. 1996;274:801–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Simon E. Skalicky
    • 1
  1. 1.University of SydneySydneyAustralia

Personalised recommendations