Advertisement

The Visual Field

  • Simon E. Skalicky

Abstract

The visual field is the portion of space visible to a single stationary eye.

Keywords

Visual Field Contrast Sensitivity Contrast Threshold Visual Field Testing Background Luminance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Heijl A, Patella VM, Bengtsson B. Effective perimetry. Dublin: Carl Zeiss Meditec, Inc.; 2012.Google Scholar
  2. 2.
    Johnson CA, Wall M. The visual field. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. Edinburgh: Saunders, Elsevier; 2011.Google Scholar
  3. 3.
    Campbell FW, Green DG. Optical and retinal factors affecting visual resolution. J Physiol. 1965;181:576–93.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Pelli DG, Bex P. Measuring contrast sensitivity. Vision Res. 2013;90:10–4.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Gilpin LB, Stewart WC, Hunt HH, Broom CD. Threshold variability using different Goldmann stimulus sizes. Acta Ophthalmol. 1990;68:674–6.CrossRefGoogle Scholar
  6. 6.
    Bloch A. Experience sur la vision. Comptes Rendus de la Societe de Biologie (Paris). 1885;37:493–5.Google Scholar
  7. 7.
    Burr DC. Temporal summation of moving images by the human visual system. Proc R Soc Lond B Biol Sci. 1981;211:321–39.CrossRefPubMedGoogle Scholar
  8. 8.
    Snowden RJ, Braddick OJ. The temporal integration and resolution of velocity signals. Vision Res. 1991;31:907–14.CrossRefPubMedGoogle Scholar
  9. 9.
    Schor CM. Neural control of eye movements. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. Edinburg: Saunders, Elsevier; 2011.Google Scholar
  10. 10.
    Marmor MF, Chien FY, Johnson MW. Value of red targets and pattern deviation plots in visual field screening for hydroxychloroquine retinopathy. JAMA Ophthalmol. 2013;131:476–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Racette L, Sample PA. Short-wavelength automated perimetry. Ophthalmol Clin North Am. 2003;16:227–36, vi–vii.CrossRefPubMedGoogle Scholar
  12. 12.
    Katz J, Sommer A. Asymmetry and variation in the normal hill of vision. Arch Ophthalmol. 1986;104:65–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Landers J, Sharma A, Goldberg I, Graham S. Topography of the frequency doubling perimetry visual field compared with that of short wavelength and achromatic automated perimetry visual fields. Br J Ophthalmol. 2006;90:70–4.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Grzybowski A. Harry Moss Traquair (1875–1954), Scottish ophthalmologist and perimetrist. Acta Ophthalmol. 2009;87:455–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Sample PA, Dannheim F, Artes PH, et al. Imaging and Perimetry Society standards and guidelines. Optom Vis Sci Off Publ Am Acad Optom. 2011;88:4–7.CrossRefGoogle Scholar
  16. 16.
    Weber EH. In: Boring EG, editor. A history of experimental psychology. New York: Appleton-Century-Crofts; 1950.Google Scholar
  17. 17.
    Wood JM, Wild JM, Bullimore MA, Gilmartin B. Factors affecting the normal perimetric profile derived by automated static threshold LED perimetry. I. Pupil size. Ophthal Physiol Opt J Br Coll Ophthal Opticians. 1988;8:26–31.CrossRefGoogle Scholar
  18. 18.
    Martin DD, Vonthein R, Wilhelm H, Schiefer U. Pupil size and perimetry – a pharmacological model using increment and decrement stimuli. Graefes Arch Clin Exp Ophthalmol Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2005;243:1091–7.CrossRefPubMedGoogle Scholar
  19. 19.
    de Castro LE, Sandoval HP, Bartholomew LR, Vroman DT, Solomon KD. High-order aberrations and preoperative associated factors. Acta Ophthalmol Scand. 2007;85:106–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Rovamo J, Kukkonen H, Mustonen J. Foveal optical modulation transfer function of the human eye at various pupil sizes. J Opt Soc Am A Opt Image Sci Vis. 1998;15:2504–13.CrossRefPubMedGoogle Scholar
  21. 21.
    Anderson DR. Perimetry with and without automation. St Louis: CV Mosby; 1987.Google Scholar
  22. 22.
    Niederhauser S, Mojon DS. Normal isopter position in the peripheral visual field in goldmann kinetic perimetry. Ophthal J Int d’ophtalmol Int J Ophthalmol Zeitschrift fur Augenheilkunde. 2002;216:406–8.CrossRefGoogle Scholar
  23. 23.
    Kirkham TH, Meyer E. Visual field area on the Goldmann hemispheric perimeter surface. Correction of cartographic errors inherent in perimetry. Curr Eye Res. 1981;1:93–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Wirtschafter JD, Hard-Boberg AL, Coffman SM. Evaluating the usefulness in neuro-ophthalmology of visual field examinations peripheral to 30 degrees. Trans Am Ophthalmol Soc. 1984;82:329–57.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Agarwal HC, Gulati V, Sihota R. Visual field assessment in glaucoma: comparative evaluation of manual kinetic Goldmann perimetry and automated static perimetry. Indian J Ophthalmol. 2000;48:301–6.PubMedGoogle Scholar
  26. 26.
    Khoury JM, Donahue SP, Lavin PJ, Tsai JC. Comparison of 24-2 and 30-2 perimetry in glaucomatous and nonglaucomatous optic neuropathies. J Neuro-Ophthal Off J North Am Neuro-Ophthal Soc. 1999;19:100–8.Google Scholar
  27. 27.
    Flanagan JG, Wild JM, Trope GE. The visual field indices in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1993;34:2266–74.PubMedGoogle Scholar
  28. 28.
    Bebie H, Fankhauser F, Spahr J. Static perimetry: strategies. Acta Ophthalmol. 1976;54:325–38.CrossRefGoogle Scholar
  29. 29.
    Schaumberger M, Schafer B, Lachenmayr BJ. Glaucomatous visual fields. FASTPAC versus full threshold strategy of the Humphrey Field Analyzer. Invest Ophthalmol Vis Sci. 1995;36:1390–7.PubMedGoogle Scholar
  30. 30.
    Bengtsson B, Olsson J, Heijl A, Rootzen H. A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol Scand. 1997;75:368–75.CrossRefPubMedGoogle Scholar
  31. 31.
    Bengtsson B, Heijl A. Evaluation of a new perimetric threshold strategy, SITA, in patients with manifest and suspect glaucoma. Acta Ophthalmol Scand. 1998;76:268–72.CrossRefPubMedGoogle Scholar
  32. 32.
    Wild JM, Pacey IE, O’Neill EC, Cunliffe IA. The SITA perimetric threshold algorithms in glaucoma. Invest Ophthalmol Vis Sci. 1999;40:1998–2009.PubMedGoogle Scholar
  33. 33.
    Johnson CA, Chauhan BC, Shapiro LR. Properties of staircase procedures for estimating thresholds in automated perimetry. Invest Ophthalmol Vis Sci. 1992;33:2966–74.PubMedGoogle Scholar
  34. 34.
    Johnson CA, Keltner JL. Automated suprathreshold static perimetry. Am J Ophthalmol. 1980;89:731–41.CrossRefPubMedGoogle Scholar
  35. 35.
    Artes PH, Henson DB, Harper R, McLeod D. Multisampling suprathreshold perimetry: a comparison with conventional suprathreshold and full-threshold strategies by computer simulation. Invest Ophthalmol Vis Sci. 2003;44:2582–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Mills RP, Drance SM. Esterman disability rating in severe glaucoma. Ophthalmology. 1986;93:371–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Keltner JL, Johnson CA, Cello KE, et al. Visual field quality control in the Ocular Hypertension Treatment Study (OHTS). J Glaucoma. 2007;16:665–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Katz J, Sommer A, Witt K. Reliability of visual field results over repeated testing. Ophthalmology. 1991;98:70–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Bickler-Bluth M, Trick GL, Kolker AE, Cooper DG. Assessing the utility of reliability indices for automated visual fields. Testing ocular hypertensives. Ophthalmology. 1989;96:616–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Bengtsson B, Heijl A. False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? Invest Ophthalmol Vis Sci. 2000;41:2201–4.PubMedGoogle Scholar
  41. 41.
    Heijl A, Krakau CE. An automatic static perimeter, design and pilot study. Acta Ophthalmol. 1975;53:293–310.CrossRefGoogle Scholar
  42. 42.
    Kunimatsu S, Suzuki Y, Shirato S, Araie M. Usefulness of gaze tracking during perimetry in glaucomatous eyes. Jpn J Ophthalmol. 2000;44:190–1.CrossRefPubMedGoogle Scholar
  43. 43.
    Flaxel CJ, Samples JR, Dustin L. Relationship between foveal threshold and visual acuity using the Humphrey visual field analyzer. Am J Ophthalmol. 2007;143:875–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Artes PH, O’Leary N, Hutchison DM, et al. Properties of the statpac visual field index. Invest Ophthalmol Vis Sci. 2011;52:4030–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Bengtsson B, Heijl A. A visual field index for calculation of glaucoma rate of progression. Am J Ophthalmol. 2008;145:343–53.CrossRefPubMedGoogle Scholar
  46. 46.
    Katz J, Quigley HA, Sommer A. Detection of incident field loss using the glaucoma hemifield test. Ophthalmology. 1996;103:657–63.CrossRefPubMedGoogle Scholar
  47. 47.
    Asman P, Heijl A. Glaucoma Hemifield Test. Automated visual field evaluation. Arch Ophthalmol. 1992;110:812–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Spry PG, Johnson CA. Identification of progressive glaucomatous visual field loss. Surv Ophthalmol. 2002;47:158–73.CrossRefPubMedGoogle Scholar
  49. 49.
    Anton A, Pazos M, Martin B, et al. Glaucoma progression detection: agreement, sensitivity, and specificity of expert visual field evaluation, event analysis, and trend analysis. Eur J Ophthalmol. 2013;23:187–95.CrossRefPubMedGoogle Scholar
  50. 50.
    Tanna AP, Budenz DL, Bandi J, et al. Glaucoma progression analysis software compared with expert consensus opinion in the detection of visual field progression in glaucoma. Ophthalmology. 2012;119:468–73.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Bengtsson B, Lindgren A, Heijl A, Lindgren G, Asman P, Patella M. Perimetric probability maps to separate change caused by glaucoma from that caused by cataract. Acta Ophthalmol Scand. 1997;75:184–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Leske MC, Heijl A, Hyman L, Bengtsson B. Early manifest glaucoma trial: design and baseline data. Ophthalmology. 1999;106:2144–53.CrossRefPubMedGoogle Scholar
  53. 53.
    van der Schoot J, Reus NJ, Colen TP, Lemij HG. The ability of short-wavelength automated perimetry to predict conversion to glaucoma. Ophthalmology. 2010;117:30–4.CrossRefPubMedGoogle Scholar
  54. 54.
    Anderson AJ, Johnson CA. Frequency-doubling technology perimetry. Ophthalmol Clin North Am. 2003;16:213–25.CrossRefPubMedGoogle Scholar
  55. 55.
    Wall M, Neahring RK, Woodward KR. Sensitivity and specificity of frequency doubling perimetry in neuro-ophthalmic disorders: a comparison with conventional automated perimetry. Invest Ophthalmol Vis Sci. 2002;43:1277–83.PubMedGoogle Scholar
  56. 56.
    Anderson AJ, Johnson CA. Frequency-doubling technology perimetry and optical defocus. Invest Ophthalmol Vis Sci. 2003;44:4147–52.CrossRefPubMedGoogle Scholar
  57. 57.
    Ramesh SV, George R, Soni PM, et al. Population norms for frequency doubling perimetry with uncorrected refractive error. Optom Vis Sci Off Publ Am Acad Optom. 2007;84:496–504.CrossRefGoogle Scholar
  58. 58.
    Tyler CW. Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 1981;20:204–12.PubMedGoogle Scholar
  59. 59.
    Matsumoto C, Takada S, Okuyama S, Arimura E, Hashimoto S, Shimomura Y. Automated flicker perimetry in glaucoma using Octopus 311: a comparative study with the Humphrey Matrix. Acta Ophthalmol Scand. 2006;84:210–5.CrossRefPubMedGoogle Scholar
  60. 60.
    Lachenmayr BJ, Drance SM, Douglas GR, Mikelberg FS. Light-sense, flicker and resolution perimetry in glaucoma: a comparative study. Graefes Arch Clin Exp Ophthalmol Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 1991;229:246–51.CrossRefPubMedGoogle Scholar
  61. 61.
    Casson EJ, Johnson CA, Nelson-Quigg JM. Temporal modulation perimetry: the effects of aging and eccentricity on sensitivity in normals. Invest Ophthalmol Vis Sci. 1993;34:3096–102.PubMedGoogle Scholar
  62. 62.
    Warner J, Lessell S. Neuro-ophthalmology of multiple sclerosis. Clin Neurosci. 1994;2:180–8.PubMedGoogle Scholar
  63. 63.
    Nevalainen J, Krapp E, Paetzold J, et al. Visual field defects in acute optic neuritis--distribution of different types of defect pattern, assessed with threshold-related supraliminal perimetry, ensuring high spatial resolution. Graefes Arch Clin Exp Ophthalmol Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2008;246:599–607.CrossRefPubMedGoogle Scholar
  64. 64.
    Cheung SH, Legge GE. Functional and cortical adaptations to central vision loss. Vis Neurosci. 2005;22:187–201.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Acton JH, Smith RT, Greenberg JP, Greenstein VC. Comparison between MP-1 and Humphrey visual field defects in glaucoma and retinitis pigmentosa. Optom Vis Sci Off Publ Am Acad Optom. 2012;89:1050–8.CrossRefGoogle Scholar
  66. 66.
    Kalviainen R, Nousiainen I. Visual field defects with vigabatrin: epidemiology and therapeutic implications. CNS Drugs. 2001;15:217–30.CrossRefPubMedGoogle Scholar
  67. 67.
    Kitazawa Y, Yamamoto T. Glaucomatous visual field defects: their characteristics and how to detect them. Clin Neurosci. 1997;4:279–83.PubMedGoogle Scholar
  68. 68.
    Goldberg I. Optic disc and visual field changes in primary open angle glaucoma. Aust J Ophthalmol. 1981;9:223–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Keltner JL, Johnson CA, Cello KE, et al. Visual field profile of optic neuritis: a final follow-up report from the optic neuritis treatment trial from baseline through 15 years. Arch Ophthalmol. 2010;128:330–7.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Chan HH, Ng FY, Chu PH. Clinical application of mfERG/VEP in assessing superior altitudinal hemifield loss. Clin Exp Optom J Austr Optom Assoc. 2005;88:253–7.CrossRefGoogle Scholar
  71. 71.
    Deleon-Ortega J, Carroll KE, Arthur SN, Girkin CA. Correlations between retinal nerve fiber layer and visual field in eyes with nonarteritic anterior ischemic optic neuropathy. Am J Ophthal. 2007;143:288–94.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Hayreh SS, Podhajsky PA, Zimmerman MB. Branch retinal artery occlusion: natural history of visual outcome. Ophthalmology. 2009;116:1188–94.e1–4.PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Nagai-Kusuhara A, Nakamura M, Kanamori A, Negi A. Association of optic disc configuration and clustered visual field sensitivity in glaucomatous eyes with hemifield visual field defects. J Glaucoma. 2009;18:62–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Schiefer U, Isbert M, Mikolaschek E, et al. Distribution of scotoma pattern related to chiasmal lesions with special reference to anterior junction syndrome. Graefes Arch Clin Exp Ophthalmol Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2004;242:468–77.CrossRefPubMedGoogle Scholar
  75. 75.
    Zhang X, Kedar S, Lynn MJ, Newman NJ, Biousse V. Homonymous hemianopias: clinical-anatomic correlations in 904 cases. Neurology. 2006;66:906–10.CrossRefPubMedGoogle Scholar
  76. 76.
    Fraser JA, Newman NJ, Biousse V. Disorders of the optic tract, radiation, and occipital lobe. Handbook of Clinical Neurology. 2011;102:205–21.CrossRefPubMedGoogle Scholar
  77. 77.
    Chang L, Chen YL, Kao MC. Intracranial metastasis of hepatocellular carcinoma: review of 45 cases. Surg Neurol. 2004;62:172–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Kedar S, Zhang X, Lynn MJ, Newman NJ, Biousse V. Congruency in homonymous hemianopia. Am J Ophthal. 2007;143:772–80.CrossRefPubMedGoogle Scholar
  79. 79.
    Leff A. A historical review of the representation of the visual field in primary visual cortex with special reference to the neural mechanisms underlying macular sparing. Brain Lang. 2004;88:268–78.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Simon E. Skalicky
    • 1
  1. 1.University of SydneySydneyAustralia

Personalised recommendations