The Ocular Surface

  • Simon E. Skalicky


The tear film (a) distribution; (b) structure


Ocular Surface Lacrimal Gland Meibomian Gland Sjogren Syndrome Bulbar Conjunctiva 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tiffany JM. The normal tear film. Dev Ophthalmol. 2008;41:1–20.CrossRefPubMedGoogle Scholar
  2. 2.
    Gipson IK. The ocular surface: the challenge to enable and protect vision: the Friedenwald lecture. Invest Ophthalmol Vis Sci. 2007;48(4390):1–8.Google Scholar
  3. 3.
    Montés-Micó R, Cerviño A, Ferrer-Blasco T, García-Lázaro S, Madrid-Costa D. The tear film and the optical quality of the eye. Ocul Surf. 2010;8:185–92.CrossRefPubMedGoogle Scholar
  4. 4.
    Chhabra M, Prausnitz JM, Radke CJ. Modeling corneal metabolism and oxygen transport during contact lens wear. Optom Vis Sci Off Publ Am Acad Optom. 2009;86:454–66.CrossRefGoogle Scholar
  5. 5.
    Garreis F, Gottschalt M, Paulsen FP. Antimicrobial peptides as a major part of the innate immune defense at the ocular surface. Dev Ophthalmol. 2010;45:16–22.CrossRefPubMedGoogle Scholar
  6. 6.
    McKown RL, Wang N, Raab RW, et al. Lacritin and other new proteins of the lacrimal functional unit. Exp Eye Res. 2009;88:848–58.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Wang J, Aquavella J, Palakuru J, Chung S, Feng C. Relationships between central tear film thickness and tear menisci of the upper and lower eyelids. Invest Ophthalmol Vis Sci. 2006;47:4349–55.CrossRefPubMedGoogle Scholar
  8. 8.
    Murube J. Basal, reflex, and psycho-emotional tears. Ocul Surf. 2009;7:60–6.CrossRefPubMedGoogle Scholar
  9. 9.
    King-Smith PE, Fink BA, Fogt N, Nichols KK, Hill RM, Wilson GS. The thickness of the human precorneal tear film: evidence from reflection spectra. Invest Ophthalmol Vis Sci. 2000;41:3348–59.PubMedGoogle Scholar
  10. 10.
    Wang J, Fonn D, Simpson TL, Jones L. Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography. Invest Ophthalmol Vis Sci. 2003;44:2524–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Greiner JV, Glonek T, Korb DR, Leahy CD. Meibomian gland phospholipids. Curr Eye Res. 1996;15:371–5.CrossRefPubMedGoogle Scholar
  12. 12.
    McCulley JP, Shine WE. Meibomian gland function and the tear lipid layer. Ocul Surf. 2003;1:97–106.CrossRefPubMedGoogle Scholar
  13. 13.
    Bron AJ, Tiffany JM, Gouveia SM, Yokoi N, Voon LW. Functional aspects of the tear film lipid layer. Exp Eye Res. 2004;78:347–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Shine WE, McCulley JP. Polar lipids in human meibomian gland secretions. Curr Eye Res. 2003;26:89–94.CrossRefPubMedGoogle Scholar
  15. 15.
    Butovich IA. Lipidomics of human Meibomian gland secretions: chemistry, biophysics, and physiological role of Meibomian lipids. Prog Lipid Res. 2011;50:278–301.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Pappas A. Epidermal surface lipids. Dermatoendocrinology. 2009;1:72–6.CrossRefGoogle Scholar
  17. 17.
    Knop E, Knop N, Millar T, Obata H, Sullivan DA. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci. 2011;52:1938–78.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Jester JV, Nicolaides N, Smith RE. Meibomian gland studies: histologic and ultrastructural investigations. Invest Ophthalmol Vis Sci. 1981;20:537–47.PubMedGoogle Scholar
  19. 19.
    Seifert P, Spitznas M. Immunocytochemical and ultrastructural evaluation of the distribution of nervous tissue and neuropeptides in the meibomian gland. Graefes Arch Clin Exp Ophthalmol. 1996;234:648–56.CrossRefPubMedGoogle Scholar
  20. 20.
    Sullivan DA, Sullivan BD, Ullman MD, et al. Androgen influence on the meibomian gland. Invest Ophthalmol Vis Sci. 2000;41:3732–42.PubMedGoogle Scholar
  21. 21.
    Sullivan DA, Sullivan BD, Evans JE, et al. Androgen deficiency, Meibomian gland dysfunction, and evaporative dry eye. Ann N Y Acad Sci. 2002;966:211–22.CrossRefPubMedGoogle Scholar
  22. 22.
    McMonnies CW. Incomplete blinking: exposure keratopathy, lid wiper epitheliopathy, dry eye, refractive surgery, and dry contact lenses. Cont Lens Anterior Eye J Br Cont Lens Assoc. 2007;30:37–51.CrossRefGoogle Scholar
  23. 23.
    Korb DR, Baron DF, Herman JP, et al. Tear film lipid layer thickness as a function of blinking. Cornea. 1994;13:354–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Stoeckelhuber M, Stoeckelhuber BM, Welsch U. Apocrine glands in the eyelid of primates contribute to the ocular host defense. Cells Tissues Organs. 2004;176:187–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Takahashi Y, Watanabe A, Matsuda H, et al. Anatomy of secretory glands in the eyelid and conjunctiva: a photographic review. Ophthal Plast Reconstr Surg. 2013;29:215–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Doughty MJ, Bergmanson JP. New insights into the surface cells and glands of the conjunctiva and their relevance to the tear film. Optometry. 2003;74:485–500.PubMedGoogle Scholar
  27. 27.
    Ohashi Y, Dogru M, Tsubota K. Laboratory findings in tear fluid analysis. Clin Chim Acta. 2006;369:17–28.CrossRefPubMedGoogle Scholar
  28. 28.
    Carney LG, Hill RM. Human tear pH. Diurnal variations. Arch Ophthalmol. 1976;94:821–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Carney LG, Mauger TF, Hill RM. Buffering in human tears: pH responses to acid and base challenge. Invest Ophthalmol Vis Sci. 1989;30:747–54.PubMedGoogle Scholar
  30. 30.
    Terry JE, Hill RM. Human tear osmotic pressure: diurnal variations and the closed eye. Arch Ophthalmol. 1978;96:120–2.CrossRefPubMedGoogle Scholar
  31. 31.
    Klenkler B, Sheardown H, Jones L, et al. Growth factors in the tear film: role in tissue maintenance, wound healing, and ocular pathology. Ocul Surf. 2007;5:228–39.CrossRefPubMedGoogle Scholar
  32. 32.
    Dartt DA. Tear lipocalin: structure and function. Ocul Surf. 2011;9:126–38.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Dartt DA, Sullivan DS. Wetting of the ocular surface. In: Albert DM, Jakobiec FA, editors. Principles and practice of ophthalmology. Philadelphia: W.B. Saunders Co; 2000.Google Scholar
  34. 34.
    Watanabe H. Significance of mucin on the ocular surface. Cornea. 2002;21:S17–22.CrossRefPubMedGoogle Scholar
  35. 35.
    McClellan KA. Mucosal defence of the outer eye. Surv Ophthalmol. 1997;42:233–46.CrossRefPubMedGoogle Scholar
  36. 36.
    Blalock TD, Spurr-Michaud SJ, Tisdale AS, Gipson IK. Release of membrane-associated mucins from ocular surface epithelia. Invest Ophthalmol Vis Sci. 2008;49:1864–71.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Diebold Y, Rios JD, Hodges RR, Rawe I, Dartt DA. Presence of nerves and their receptors in mouse and human conjunctival goblet cells. Invest Ophthalmol Vis Sci. 2001;42:2270–82.PubMedGoogle Scholar
  38. 38.
    Rios JD, Zoukhri D, Rawe IM, Hodges RR, Zieske JD, Dartt DA. Immunolocalization of muscarinic and VIP receptor subtypes and their role in stimulating goblet cell secretion. Invest Ophthalmol Vis Sci. 1999;40:1102–11.PubMedGoogle Scholar
  39. 39.
    Turner HC, Alvarez LJ, Bildin VN, Candia OA. Immunolocalization of Na-K-ATPase, Na-K-Cl and Na-glucose cotransporters in the conjunctival epithelium. Curr Eye Res. 2000;21:843–50.CrossRefPubMedGoogle Scholar
  40. 40.
    Verkman AS, Ruiz-Ederra J, Levin MH. Functions of aquaporins in the eye. Prog Retin Eye Res. 2008;27:420–33.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Nakamura M, Imanaka T, Sakamoto A. Diquafosol ophthalmic solution for dry eye treatment. Adv Ther. 2012;29:579–89.CrossRefPubMedGoogle Scholar
  42. 42.
    Cher I. A new look at lubrication of the ocular surface: fluid mechanics behind the blinking eyelids. Ocul Surf. 2008;6:79–86.CrossRefPubMedGoogle Scholar
  43. 43.
    Govindarajan B, Gipson IK. Membrane-tethered mucins have multiple functions on the ocular surface. Exp Eye Res. 2010;90:655–63.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Snell RS, Lemp MA. Clinical anatomy of the eye. Oxford: Blackwell Science Inc; 1998.Google Scholar
  45. 45.
    Obata H. Anatomy and histopathology of the human lacrimal gland. Cornea. 2006;25:S82–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Lorber M. Gross characteristics of normal human lacrimal glands. Ocul Surf. 2007;5:13–22.CrossRefPubMedGoogle Scholar
  47. 47.
    Dartt DA. Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res. 2009;28:155–77.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Knop E, Knop N. The role of eye-associated lymphoid tissue in corneal immune protection. J Anat. 2005;206:271–85.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Mircheff AK. Lacrimal fluid and electrolyte secretion: a review. Curr Eye Res. 1989;8:607–17.CrossRefPubMedGoogle Scholar
  50. 50.
    Gilbard JP, Dartt DA. Changes in rabbit lacrimal gland fluid osmolarity with flow rate. Invest Ophthalmol Vis Sci. 1982;23:804–6.PubMedGoogle Scholar
  51. 51.
    Dartt DA, Moller M, Poulsen JH. Lacrimal gland electrolyte and water secretion in the rabbit: localization and role of (Na+-K+)-activated ATPase. J Physiol. 1981;321:557–69.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Hodges RR, Zoukhri D, Sergheraert C, Zieske JD, Dartt DA. Identification of vasoactive intestinal peptide receptor subtypes in the lacrimal gland and their signal-transducing components. Invest Ophthalmol Vis Sci. 1997;38:610–9.PubMedGoogle Scholar
  53. 53.
    Zoukhri D, Hodges RR, Sergheraert C, Dartt DA. Cholinergic-induced Ca2+ elevation in rat lacrimal gland acini is negatively modulated by PKCdelta and PKCepsilon. Invest Ophthalmol Vis Sci. 2000;41:386–92.PubMedGoogle Scholar
  54. 54.
    Hodges RR, Dicker DM, Rose PE, Dartt DA. Alpha 1-adrenergic and cholinergic agonists use separate signal transduction pathways in lacrimal gland. Am J Physiol. 1992;262:G1087–96.PubMedGoogle Scholar
  55. 55.
    Situ P, Simpson TL. Interaction of corneal nociceptive stimulation and lacrimal secretion. Invest Ophthalmol Vis Sci. 2010;51:5640–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Sullivan DA, Edwards JA, Wickham LA, et al. Identification and endocrine control of sex steroid binding sites in the lacrimal gland. Curr Eye Res. 1996;15:279–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Sullivan DA, Allansmith MR. Hormonal influence on the secretory immune system of the eye: endocrine interactions in the control of IgA and secretory component levels in tears of rats. Immunology. 1987;60:337–43.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Gipson IK. Distribution of mucins at the ocular surface. Exp Eye Res. 2004;78:379–88.CrossRefPubMedGoogle Scholar
  59. 59.
    Gipson IK, Argueso P. Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol. 2003;231:1–49.CrossRefPubMedGoogle Scholar
  60. 60.
    Ordonez P, Di Girolamo N. Limbal epithelial stem cells: role of the niche microenvironment. Stem Cells. 2012;30:100–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Liang L, Sheha H, Li J, Tseng SC. Limbal stem cell transplantation: new progresses and challenges. Eye (Lond). 2009;23:1946–53.CrossRefGoogle Scholar
  62. 62.
    Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 1989;57:201–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Paulsen F. Functional anatomy and immunological interactions of ocular surface and adnexa. Dev Ophthalmol. 2008;41:21–35.CrossRefPubMedGoogle Scholar
  64. 64.
    Knop E, Knop N. Anatomy and immunology of the ocular surface. Chem Immunol Allergy. 2007;92:36–49.CrossRefPubMedGoogle Scholar
  65. 65.
    Hwang K, Choi HG, Nam YS, Kim DJ. Anatomy of arcuate expansion of capsulopalpebral fascia. J Craniofac Surg. 2010;21:239–42.CrossRefPubMedGoogle Scholar
  66. 66.
    Doughty MJ. Goblet cells of the normal human bulbar conjunctiva and their assessment by impression cytology sampling. Ocul Surf. 2012;10:149–69.CrossRefPubMedGoogle Scholar
  67. 67.
    Bergmanson JP, Doughty MJ, Blocker Y. The acinar and ductal organisation of the tarsal accessory lacrimal gland of Wolfring in rabbit eyelid. Exp Eye Res. 1999;68:411–21.CrossRefPubMedGoogle Scholar
  68. 68.
    Majo F, Rochat A, Nicolas M, Jaoude GA, Barrandon Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature. 2008;456:250–4.CrossRefPubMedGoogle Scholar
  69. 69.
    Akinci MA, Turner H, Taveras M, et al. Molecular profiling of conjunctival epithelial side-population stem cells: atypical cell surface markers and sources of a slow-cycling phenotype. Invest Ophthalmol Vis Sci. 2009;50:4162–72.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Wolosin JM. Cell markers and the side population phenotype in ocular surface epithelial stem cell characterization and isolation. Ocul Surf. 2006;4:10–23.CrossRefPubMedGoogle Scholar
  71. 71.
    Nichols JJ, Mitchell GL, King-Smith PE. Thinning rate of the precorneal and prelens tear films. Invest Ophthalmol Vis Sci. 2005;46:2353–61.CrossRefPubMedGoogle Scholar
  72. 72.
    Tsubota K, Yamada M. Tear evaporation from the ocular surface. Invest Ophthalmol Vis Sci. 1992;33:2942–50.PubMedGoogle Scholar
  73. 73.
    Zhu H, Chauhan A. A mathematical model for tear drainage through the canaliculi. Curr Eye Res. 2005;30:621–30.CrossRefPubMedGoogle Scholar
  74. 74.
    Paulsen F. The human nasolacrimal ducts. Adv Anat Embryol Cell Biol. 2003;170:1–106.CrossRefGoogle Scholar
  75. 75.
    Kominami R, Yasutaka S, Taniguchi Y, Shinohara H. Anatomy and histology of the lacrimal fluid drainage system. Okajimas Folia Anat Jpn. 2000;77:155–60.CrossRefPubMedGoogle Scholar
  76. 76.
    Lefebvre DR, Freitag SK. Update on imaging of the lacrimal drainage system. Semin Ophthalmol. 2012;27:175–86.CrossRefPubMedGoogle Scholar
  77. 77.
    Lee MJ, Kyung HS, Han MH, Choung HK, Kim NJ, Khwarg S. Evaluation of lacrimal tear drainage mechanism using dynamic fluoroscopic dacryocystography. Ophthal Plast Reconstr Surg. 2011;27:164–7.PubMedGoogle Scholar
  78. 78.
    Doane MG. Blinking and the mechanics of the lacrimal drainage system. Ophthalmology. 1981;88:844–51.CrossRefPubMedGoogle Scholar
  79. 79.
    Amrith S, Goh PS, Wang SC. Tear flow dynamics in the human nasolacrimal ducts – a pilot study using dynamic magnetic resonance imaging. Graefes Arch Clin Exp Ophthalmol. 2005;243:127–31.CrossRefPubMedGoogle Scholar
  80. 80.
    Amrith S, Goh PS, Wang SC. Lacrimal sac volume measurement during eyelid closure and opening. Clin Experiment Ophthalmol. 2007;35:135–9.PubMedGoogle Scholar
  81. 81.
    Villani E, Canton V, Magnani F, Viola F, Nucci P, Ratiglia R. The aging Meibomian gland: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2013;54(7):4735–40.CrossRefPubMedGoogle Scholar
  82. 82.
    Foulks GN. The correlation between the tear film lipid layer and dry eye disease. Surv Ophthalmol. 2007;52:369–74.CrossRefPubMedGoogle Scholar
  83. 83.
    Goto E, Endo K, Suzuki A, Fujikura Y, Matsumoto Y, Tsubota K. Tear evaporation dynamics in normal subjects and subjects with obstructive meibomian gland dysfunction. Invest Ophthalmol Vis Sci. 2003;44:533–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Arbabi EM, Kelly RJ, Carrim ZI. Chalazion. BMJ. 2010;341:c4044.PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Jayamanne DG, Dayan M, Jenkins D, Porter R. The role of staphylococcal superantigens in the pathogenesis of marginal keratitis. Eye (Lond). 1997;11(Pt 5):618–21.CrossRefGoogle Scholar
  86. 86.
    Patel R, Shahane A. The epidemiology of Sjogren’s syndrome. Clin Epidemiol. 2014;6:247–55.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Zoukhri D. Effect of inflammation on lacrimal gland function. Exp Eye Res. 2006;82:885–98.PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Skalicky SE, Petsoglou C, Gurbaxani A, Fraser CL, McCluskey P. New agents for treating dry eye syndrome. Curr Allergy Asthma Rep. 2013;13:322–8.CrossRefPubMedGoogle Scholar
  89. 89.
    Johnson ME, Murphy PJ. Changes in the tear film and ocular surface from dry eye syndrome. Prog Retin Eye Res. 2004;23:449–74.CrossRefPubMedGoogle Scholar
  90. 90.
    Ahmad S. Concise review: limbal stem cell deficiency, dysfunction, and distress. Stem Cells Transl Med. 2012;1:110–5.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Simon E. Skalicky
    • 1
  1. 1.University of SydneySydneyAustralia

Personalised recommendations