Skip to main content

The Primary Visual Cortex

  • Chapter
Ocular and Visual Physiology

Abstract

The primary visual cortex (V1) receives visual information from segregated magnocellular, parvocellular, and koniocellular channels of the lateral geniculate nucleus (LGN) [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blasdel GG, Lund JS. Termination of afferent axons in macaque striate cortex. J Neurosci. 1983;3:1389–413.

    CAS  PubMed  Google Scholar 

  2. Hendrickson AE, Wilson JR, Ogren MP. The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. J Comp Neurol. 1978;182:123–36.

    Article  CAS  PubMed  Google Scholar 

  3. Nassi JJ, Callaway EM. Parallel processing strategies of the primate visual system. Nat Rev Neurosci. 2009;10:360–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988;240:740–9.

    Article  CAS  PubMed  Google Scholar 

  5. Schiller PH, Logothetis NK. The color-opponent and broad-band channels of the primate visual system. Trends Neurosci. 1990;13:392–8.

    Article  CAS  PubMed  Google Scholar 

  6. Hendry SH, Reid RC. The koniocellular pathway in primate vision. Annu Rev Neurosci. 2000;23:127–53.

    Article  CAS  PubMed  Google Scholar 

  7. Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991;1:1–47.

    Article  CAS  PubMed  Google Scholar 

  8. Merigan WH, Byrne CE, Maunsell JH. Does primate motion perception depend on the magnocellular pathway? J Neurosci. 1991;11:3422–9.

    CAS  PubMed  Google Scholar 

  9. Merigan WH, Katz LM, Maunsell JH. The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J Neurosci. 1991;11:994–1001.

    CAS  PubMed  Google Scholar 

  10. Hinds O, Polimeni JR, Rajendran N, et al. Locating the functional and anatomical boundaries of human primary visual cortex. Neuroimage. 2009;46:915–22.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hinds OP, Rajendran N, Polimeni JR, et al. Accurate prediction of V1 location from cortical folds in a surface coordinate system. Neuroimage. 2008;39:1585–99.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Fox PT, Miezin FM, Allman JM, Van Essen DC, Raichle ME. Retinotopic organization of human visual cortex mapped with positron-emission tomography. J Neurosci. 1987;7:913–22.

    CAS  PubMed  Google Scholar 

  13. Endo S, Toyama H, Kimura Y, et al. Mapping visual field with positron emission tomography by mathematical modeling of the retinotopic organization in the calcarine cortex. IEEE Trans Med Imaging. 1997;16:252–60.

    Article  CAS  PubMed  Google Scholar 

  14. Brodmann K. Vergleichende lokalisationlehre der grosshirnrinde in ihren prinzipien dargestelt auf des zellenbaues. Leipzig: Barth JA; 1909.

    Google Scholar 

  15. Callaway EM. Local circuits in primary visual cortex of the macaque monkey. Annu Rev Neurosci. 1998;21:47–74.

    Article  CAS  PubMed  Google Scholar 

  16. Xu X, Callaway EM. Laminar specificity of functional input to distinct types of inhibitory cortical neurons. J Neurosci. 2009;29:70–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Olivas ND, Quintanar-Zilinskas V, Nenadic Z, Xu X. Laminar circuit organization and response modulation in mouse visual cortex. Front Neural Circuits. 2012;6:70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Werner L, Voss K, Seifert I, Neumann E. Age-related classification of pyramidal and stellate cells in the rat visual cortex: a Nissl study with the ‘Morphoquant’. J Hirnforsch. 1981;22:397–403.

    CAS  PubMed  Google Scholar 

  19. Chen W, Zhang JJ, Hu GY, Wu CP. Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro. Neuroscience. 1996;73:39–55.

    Article  CAS  PubMed  Google Scholar 

  20. Lund JS, Wu CQ. Local circuit neurons of macaque monkey striate cortex: IV. Neurons of laminae 1-3A. J Comp Neurol. 1997;384:109–26.

    Article  CAS  PubMed  Google Scholar 

  21. Lund JS, Yoshioka T. Local circuit neurons of macaque monkey striate cortex: III. Neurons of laminae 4B, 4A, and 3B. J Comp Neurol. 1991;311:234–58.

    Article  CAS  PubMed  Google Scholar 

  22. Lund JS, Hawken MJ, Parker AJ. Local circuit neurons of macaque monkey striate cortex: II. Neurons of laminae 5B and 6. J Comp Neurol. 1988;276:1–29.

    Article  CAS  PubMed  Google Scholar 

  23. Economides JR, Sincich LC, Adams DL, Horton JC. Orientation tuning of cytochrome oxidase patches in macaque primary visual cortex. Nat Neurosci. 2011;14:1574–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Casagrande V, Marion R. Processing in the primary visual cortex. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. Saunders: Elsevier; 2011.

    Google Scholar 

  25. Chatterjee S, Callaway EM. Parallel colour-opponent pathways to primary visual cortex. Nature. 2003;426:668–71.

    Article  CAS  PubMed  Google Scholar 

  26. Hubel DH, Wiesel TN. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol. 1972;146:421–50.

    Article  CAS  PubMed  Google Scholar 

  27. Michael CR. Retinal afferent arborization patterns, dendritic field orientations, and the segregation of function in the lateral geniculate nucleus of the monkey. Proc Natl Acad Sci U S A. 1988;85:4914–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Preuss TM, Qi H, Kaas JH. Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci U S A. 1999;96:11601–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Shipp S. The functional logic of cortico-pulvinar connections. Philos Trans R Soc Lond B Biol Sci. 2003;358:1605–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Gagolewicz PJ, Dringenberg HC. Selective potentiation of crossed vs. uncrossed inputs from lateral geniculate nucleus to visual cortex by the basal forebrain: potential facilitation of rodent binocularity. Neurosci Lett. 2009;463:130–4.

    Article  CAS  PubMed  Google Scholar 

  31. Cunningham Jr ET, Levay S. Laminar and synaptic organization of the projection from the thalamic nucleus centralis to primary visual cortex in the cat. J Comp Neurol. 1986;254:66–77.

    PubMed  Google Scholar 

  32. Freese JL, Amaral DG. The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J Comp Neurol. 2005;486:295–317.

    Article  PubMed  Google Scholar 

  33. Rockland KS, Ojima H. Multisensory convergence in calcarine visual areas in macaque monkey. Int J Psychophysiol. 2003;50:19–26.

    Article  PubMed  Google Scholar 

  34. Shipp S, Zeki S. The organization of connections between areas V5 and V1 in macaque monkey visual cortex. Eur J Neurosci. 1989;1:309–32.

    Article  CAS  PubMed  Google Scholar 

  35. Federer F, Ichida JM, Jeffs J, Schiessl I, McLoughlin N, Angelucci A. Four projection streams from primate V1 to the cytochrome oxidase stripes of V2. J Neurosci. 2009;29:15455–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Nhan HL, Callaway EM. Morphology of superior colliculus- and middle temporal area-projecting neurons in primate primary visual cortex. J Comp Neurol. 2012;520:52–80.

    Article  PubMed  Google Scholar 

  37. Ichida JM, Casagrande VA. Organization of the feedback pathway from striate cortex (V1) to the lateral geniculate nucleus (LGN) in the owl monkey (Aotus trivirgatus). J Comp Neurol. 2002;454:272–83.

    Article  PubMed  Google Scholar 

  38. Zarrinpar A, Callaway EM. Local connections to specific types of layer 6 neurons in the rat visual cortex. J Neurophysiol. 2006;95:1751–61.

    Article  PubMed  Google Scholar 

  39. Horton JC. Ocular integration in the human visual cortex. Can J Opthalmol. 2006;41:584–93.

    Article  Google Scholar 

  40. Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195:215–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Adams DL, Sincich LC, Horton JC. Complete pattern of ocular dominance columns in human primary visual cortex. J Neurosci. 2007;27:10391–403.

    Article  CAS  PubMed  Google Scholar 

  42. Adams DL, Horton JC. Ocular integration in the human visual cortex. Neuroscientist. 2009;15:62–77.

    Article  PubMed  Google Scholar 

  43. Horton JC, Hocking DR. Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. J Neurosci. 1997;17:3684–709.

    CAS  PubMed  Google Scholar 

  44. Horton JC, Stryker MP. Amblyopia induced by anisometropia without shrinkage of ocular dominance columns in human striate cortex. Proc Natl Acad Sci U S A. 1993;90:5494–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Chino YM, Smith 3rd EL, Hatta S, Cheng H. Postnatal development of binocular disparity sensitivity in neurons of the primate visual cortex. J Neurosci. 1997;17:296–307.

    CAS  PubMed  Google Scholar 

  46. Sakai E, Bi H, Maruko I, et al. Cortical effects of brief daily periods of unrestricted vision during early monocular form deprivation. J Neurophysiol. 2006;95:2856–65.

    Article  CAS  PubMed  Google Scholar 

  47. Wensveen JM, Harwerth RS, Hung LF, Ramamirtham R, Kee CS, Smith 3rd EL. Brief daily periods of unrestricted vision can prevent form-deprivation amblyopia. Invest Ophthalmol Vis Sci. 2006;47:2468–77.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Smith 3rd EL, Chino YM, Ni J, Cheng H, Crawford ML, Harwerth RS. Residual binocular interactions in the striate cortex of monkeys reared with abnormal binocular vision. J Neurophysiol. 1997;78:1353–62.

    PubMed  Google Scholar 

  49. Hubel DH, Wiesel TN. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc of Lond B Biol Sci. 1977;198:1–59.

    Article  CAS  Google Scholar 

  50. Ringach DL. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J Neurophysiol. 2002;88:455–63.

    PubMed  Google Scholar 

  51. Hammond P, Munden IM. Areal influences on complex cells in cat striate cortex: stimulus-specificity of width and length summation. Exp Brain Res. 1990;80:135–47.

    Article  CAS  PubMed  Google Scholar 

  52. Hietanen MA, Cloherty SL, van Kleef JP, Wang C, Dreher B, Ibbotson MR. Phase sensitivity of complex cells in primary visual cortex. Neuroscience. 2013;237:19–28.

    Article  CAS  PubMed  Google Scholar 

  53. Movshon JA, Thompson ID, Tolhurst DJ. Receptive field organization of complex cells in the cat’s striate cortex. J Physiol. 1978;283:79–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Movshon JA, Thompson ID, Tolhurst DJ. Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J Physiol. 1978;283:53–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Pack CC, Livingstone MS, Duffy KR, Born RT. End-stopping and the aperture problem: two-dimensional motion signals in macaque V1. Neuron. 2003;39:671–80.

    Article  CAS  PubMed  Google Scholar 

  56. Yazdanbakhsh A, Livingstone MS. End stopping in V1 is sensitive to contrast. Nat Neurosci. 2006;9:697–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Heitger F, Rosenthaler L, von der Heydt R, Peterhans E, Kubler O. Simulation of neural contour mechanisms: from simple to end-stopped cells. Vision Res. 1992;32:963–81.

    Article  CAS  PubMed  Google Scholar 

  58. Lochmann T, Blanche TJ, Butts DA. Construction of direction selectivity through local energy computations in primary visual cortex. PLoS One. 2013;8, e58666.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Ohzawa I, DeAngelis GC, Freeman RD. Encoding of binocular disparity by complex cells in the cat’s visual cortex. J Neurophysiol. 1997;77:2879–909.

    CAS  PubMed  Google Scholar 

  60. Scholl B, Burge J, Priebe NJ. Binocular integration and disparity selectivity in mouse primary visual cortex. J Neurophysiol. 2013.

    Google Scholar 

  61. Bredfeldt CE, Ringach DL. Dynamics of spatial frequency tuning in macaque V1. J Neurosci. 2002;22:1976–84.

    CAS  PubMed  Google Scholar 

  62. Ringach DL, Hawken MJ, Shapley R. Dynamics of orientation tuning in macaque V1: the role of global and tuned suppression. J Neurophysiol. 2003;90:342–52.

    Article  PubMed  Google Scholar 

  63. Angelucci A, Bressloff PC. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Prog Brain Res. 2006;154:93–120.

    Article  PubMed  Google Scholar 

  64. Huk AC, Heeger DJ. Task-related modulation of visual cortex. J Neurophysiol. 2000;83:3525–36.

    CAS  PubMed  Google Scholar 

  65. Harrison SA, Tong F. Decoding reveals the contents of visual working memory in early visual areas. Nature. 2009;458:632–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Shuler MG, Bear MF. Reward timing in the primary visual cortex. Science. 2006;311:1606–9.

    Article  CAS  PubMed  Google Scholar 

  67. Dow BM. Orientation and color columns in monkey visual cortex. Cereb Cortex. 2002;12:1005–15.

    Article  PubMed  Google Scholar 

  68. Ts’o DY, Zarella M, Burkitt G. Whither the hypercolumn? J Physiol. 2009;587:2791–805.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Lee SG, Tanaka S, Kim S. Orientation tuning and synchronization in the hypercolumn model. Phys Rev E Stat Nonlinr Soft Matter Phys. 2004;69:011914.

    Article  Google Scholar 

  70. Lerchner A, Sterner G, Hertz J, Ahmadi M. Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex. Network. 2006;17:131–50.

    Article  PubMed  Google Scholar 

  71. Livingstone MS, Hubel DH. Anatomy and physiology of a color system in the primate visual cortex. J Neurosci. 1984;4:309–56.

    CAS  PubMed  Google Scholar 

  72. Wong AM. New concepts concerning the neural mechanisms of amblyopia and their clinical implications. Can J Opthalmol. 2012;47:399–409.

    Article  Google Scholar 

  73. Mitchell DE, Sengpiel F. Neural mechanisms of recovery following early visual deprivation. Philos Trans R Soc Lond B Biol Sci. 2009;364:383–98.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Horton JC, Hocking DR. Effect of early monocular enucleation upon ocular dominance columns and cytochrome oxidase activity in monkey and human visual cortex. Vis Neurosci. 1998;15:289–303.

    Article  CAS  PubMed  Google Scholar 

  75. von Noorden GK, Crawford ML. The lateral geniculate nucleus in human strabismic amblyopia. Invest Ophthalmol Vis Sci. 1992;33:2729–32.

    Google Scholar 

  76. Walker RA, Rubab S, Voll AR, Erraguntla V, Murphy PH. Macular and peripapillary retinal nerve fibre layer thickness in adults with amblyopia. Can J Opthalmol. 2011;46:425–7.

    Article  Google Scholar 

  77. Huynh SC, Samarawickrama C, Wang XY, et al. Macular and nerve fiber layer thickness in amblyopia: the Sydney Childhood Eye Study. Ophthalmology. 2009;116:1604–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Skalicky, S.E. (2016). The Primary Visual Cortex. In: Ocular and Visual Physiology. Springer, Singapore. https://doi.org/10.1007/978-981-287-846-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-846-5_14

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-845-8

  • Online ISBN: 978-981-287-846-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics