Skip to main content

Rho-Kinase as a Therapeutic Target for Pulmonary Hypertension

  • Chapter
  • First Online:
Book cover Diagnosis and Treatment of Pulmonary Hypertension

Abstract

Pulmonary vascular remodeling contributes to the development of pulmonary vascular resistance in patients with pulmonary hypertension (PH). The development of PH involves a multiple genetic, molecular, and humoral abnormalities, in which fibroblasts, vascular smooth muscle and endothelial cells, and inflammatory cells play a crucial role. A series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway plays important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of many cardiovascular diseases including PH. Additionally, cyclophilin A is secreted by vascular smooth muscle cells, inflammatory cells, and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Therefore, the RhoA/Rho-kinase pathway plays crucial roles in both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Here, we will review the recent advances regarding the importance of Rho-kinases in the development of PH and as a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michelakis ED. Pulmonary arterial hypertension: yesterday, today, tomorrow. Circ Res. 2014;115(1):109–14.

    Article  CAS  PubMed  Google Scholar 

  2. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006;99(7):675–91.

    Article  CAS  PubMed  Google Scholar 

  3. Satoh K, Kagaya Y, Nakano M, Ito Y, Ohta J, Tada H, et al. Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice. Circulation. 2006;113(11):1442–50.

    Article  CAS  PubMed  Google Scholar 

  4. Satoh K, Fukumoto Y, Nakano M, Sugimura K, Nawata J, Demachi J, et al. Statin ameliorates hypoxia-induced pulmonary hypertension associated with down-regulated stromal cell-derived factor-1. Cardiovasc Res. 2009;81(1):226–34.

    Article  CAS  PubMed  Google Scholar 

  5. Shimizu T, Fukumoto Y, Tanaka S, Satoh K, Ikeda S, Shimokawa H. Crucial role of ROCK2 in vascular smooth muscle cells for hypoxia-induced pulmonary hypertension in mice. Arterioscler Thromb Vasc Biol. 2013;33(12):2780–91.

    Article  CAS  PubMed  Google Scholar 

  6. Elias-Al-Mamun M, Satoh K, Tanaka S, Shimizu T, Nergui S, Miyata S, et al. Combination therapy with fasudil and sildenafil ameliorates monocrotaline-induced pulmonary hypertension and survival in rats. Circ J. 2014;78(4):967–76.

    Article  CAS  PubMed  Google Scholar 

  7. Ikeda S, Satoh K, Kikuchi N, Miyata S, Suzuki K, Omura J, et al. Crucial role of Rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice. Arterioscler Thromb Vasc Biol. 2014;34(6):1260–71.

    Article  CAS  PubMed  Google Scholar 

  8. Satoh K, Matoba T, Suzuki J, O’Dell MR, Nigro P, Cui Z, et al. Cyclophilin A mediates vascular remodeling by promoting inflammation and vascular smooth muscle cell proliferation. Circulation. 2008;117(24):3088–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nigro P, Satoh K, O’Dell MR, Soe NN, Cui Z, Mohan A, et al. Cyclophilin A is an inflammatory mediator that promotes atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2011;208(1):53–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yurchenko V, Zybarth G, O’Connor M, Dai WW, Franchin G, Hao T, et al. Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J Biol Chem. 2002;277(25):22959–65.

    Article  CAS  PubMed  Google Scholar 

  11. Miller LH, Ackerman HC, Su XZ, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med. 2013;19(2):156–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 1996;15(9):2208–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Leung T, Chen XQ, Manser E, Lim L. The p160 RhoA-binding kinase ROKα is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol. 1996;16(10):5313–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996;15(8):1885–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shimokawa H. 2014 Williams Harvey lecture: importance of coronary vasomotion abnormalities -from bench to bedside. Eur Heart J. 2014;35(45):3180–93.

    Article  CAS  PubMed  Google Scholar 

  16. Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2005;25(9):1767–75.

    Article  CAS  PubMed  Google Scholar 

  17. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273(5272):245–8.

    Article  CAS  PubMed  Google Scholar 

  18. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 1996;271(34):20246–9.

    Article  CAS  PubMed  Google Scholar 

  19. Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H, Oshima M, et al. ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol. 2005;168(6):941–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thumkeo D, Keel J, Ishizaki T, Hirose M, Nonomura K, Oshima H, et al. Targeted disruption of the mouse Rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol. 2003;23(14):5043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Noma K, Rikitake Y, Oyama N, Yan G, Alcaide P, Liu PY, et al. ROCK1 mediates leukocyte recruitment and neointima formation following vascular injury. J Clin Invest. 2008;118(5):1632–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alexander RW. Theodore Cooper memorial lecture. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension. 1995;25(2):155–61.

    Article  CAS  PubMed  Google Scholar 

  23. Omar HA, Cherry PD, Mortelliti MP, Burke-Wolin T, Wolin MS. Inhibition of coronary artery superoxide dismutase attenuates endothelium-dependent and -independent nitrovasodilator relaxation. Circ Res. 1991;69(3):601–8.

    Article  CAS  PubMed  Google Scholar 

  24. Baas AS, Berk BC. Differential activation of mitogen-activated protein kinases by H2O2 and O2 in vascular smooth muscle cells. Circ Res. 1995;77(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  25. Shimokawa H. Cellular and molecular mechanisms of coronary artery spasm: lessons from animal models. Jpn Circ J. 2000;64(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  26. Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol. 2002;39(3):319–27.

    Article  CAS  PubMed  Google Scholar 

  27. Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, et al. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science. 1997;275(5304):1308–11.

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Weigand L, Foxson J, Shimoda LA, Sylvester JT. Ca2+ signaling in hypoxic pulmonary vasoconstriction: effects of myosin light chain and Rho-kinase antagonists. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L674–85.

    Article  CAS  PubMed  Google Scholar 

  29. Shimokawa H, Rashid M. Development of Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol Sci. 2007;28(6):296–302.

    Article  CAS  PubMed  Google Scholar 

  30. Satoh K, Fukumoto Y, Shimokawa H. Rho-kinase: important new therapeutic target in cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2011;301(2):H287–96.

    Article  CAS  PubMed  Google Scholar 

  31. Shimokawa H, Satoh K. 2015 ATVB plenary lecture: translational research on Rho-kinase in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2015;35(8):1756–69.

    Article  CAS  PubMed  Google Scholar 

  32. Shimokawa H, Sunamura S, Satoh K. RhoA/Rho-kinase in the cardiovascular system. Circ Res. 2016;118:352–66.

    Article  CAS  PubMed  Google Scholar 

  33. Eto Y, Shimokawa H, Hiroki J, Morishige K, Kandabashi T, Matsumoto Y, et al. Gene transfer of dominant negative Rho-kinase suppresses neointimal formation after balloon injury in pigs. Am J Physiol Heart Circ Physiol. 2000;278(6):H1744–50.

    CAS  PubMed  Google Scholar 

  34. Sawada N, Itoh H, Ueyama K, Yamashita J, Doi K, Chun TH, et al. Inhibition of Rho-associated kinase results in suppression of neointimal formation of balloon-injured arteries. Circulation. 2000;101(17):2030–3.

    Article  CAS  PubMed  Google Scholar 

  35. Shibata R, Kai H, Seki Y, Kato S, Morimatsu M, Kaibuchi K, et al. Role of Rho-associated kinase in neointima formation after vascular injury. Circulation. 2001;103(2):284–9.

    Article  CAS  PubMed  Google Scholar 

  36. Miyata K, Shimokawa H, Kandabashi T, Higo T, Morishige K, Eto Y, et al. Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo. Arterioscler Thromb Vasc Biol. 2000;20(11):2351–8.

    Article  CAS  PubMed  Google Scholar 

  37. Shimokawa H, Ito A, Fukumoto Y, Kadokami T, Nakaike R, Sakata M, et al. Chronic treatment with interleukin-1β induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. J Clin Invest. 1996;97(3):769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shimokawa H, Morishige K, Miyata K, Kandabashi T, Eto Y, Ikegaki I, et al. Long-term inhibition of Rho-kinase induces a regression of arteriosclerotic coronary lesions in a porcine model in vivo. Cardiovasc Res. 2001;51(1):169–77.

    Article  CAS  PubMed  Google Scholar 

  39. Matsumoto Y, Uwatoku T, Oi K, Abe K, Hattori T, Morishige K, et al. Long-term inhibition of Rho-kinase suppresses neointimal formation after stent implantation in porcine coronary arteries: involvement of multiple mechanisms. Arterioscler Thromb Vasc Biol. 2004;24(1):181–6.

    Article  CAS  PubMed  Google Scholar 

  40. Hattori T, Shimokawa H, Higashi M, Hiroki J, Mukai Y, Tsutsui H, et al. Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation. 2004;109(18):2234–9.

    Article  CAS  PubMed  Google Scholar 

  41. Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK. Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation. 2002;106(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  42. Hiroki J, Shimokawa H, Higashi M, Morikawa K, Kandabashi T, Kawamura N, et al. Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells. J Mol Cell Cardiol. 2004;37(2):537–46.

    Article  CAS  PubMed  Google Scholar 

  43. Oi K, Shimokawa H, Hiroki J, Uwatoku T, Abe K, Matsumoto Y, et al. Remnant lipoproteins from patients with sudden cardiac death enhance coronary vasospastic activity through upregulation of Rho-kinase. Arterioscler Thromb Vasc Biol. 2004;24(5):918–22.

    Article  CAS  PubMed  Google Scholar 

  44. Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res. 2003;93(8):767–75.

    Article  CAS  PubMed  Google Scholar 

  45. Satoh K, Godo S, Saito H, Enkhjargal B, Shimokawa H. Dual roles of vascular-derived reactive oxygen species-with a special reference to hydrogen peroxide and cyclophilin A. J Mol Cell Cardiol. 2014;73C:50–6.

    Article  Google Scholar 

  46. Shimokawa H, Satoh K. Light and dark of reactive oxygen species for vascular function. J Cardiovasc Pharmacol. 2015;65(5):412–8.

    Article  CAS  PubMed  Google Scholar 

  47. Jin ZG, Melaragno MG, Liao DF, Yan C, Haendeler J, Suh YA, et al. Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ Res. 2000;87(9):789–96.

    Article  CAS  PubMed  Google Scholar 

  48. Liao DF, Jin ZG, Baas AS, Daum G, Gygi SP, Aebersold R, et al. Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem. 2000;275(1):189–96.

    Article  CAS  PubMed  Google Scholar 

  49. Satoh K. Cyclophilin A in cardiovascular homeostasis and diseases. Tohoku J Exp Med. 2015;235(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  50. Satoh K, Nigro P, Berk BC. Oxidative stress and vascular smooth muscle cell growth: a mechanistic linkage by cyclophilin A. Antioxid Redox Signal. 2010;12(5):675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Satoh K, Shimokawa H, Berk BC. Cyclophilin A: promising new target in cardiovascular therapy. Circ J. 2010;74(11):2249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Seizer P, Ungern-Sternberg SN, Schonberger T, Borst O, Munzer P, Schmidt EM, et al. Extracellular cyclophilin A activates platelets via EMMPRIN (CD147) and PI3K/Akt signaling, which promotes platelet adhesion and thrombus formation in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2015;35(3):655–63.

    Article  CAS  PubMed  Google Scholar 

  53. Seizer P, Gawaz M, May AE. Cyclophilin A and EMMPRIN (CD147) in cardiovascular diseases. Cardiovasc Res. 2014;102(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  54. Eto M, Barandier C, Rathgeb L, Kozai T, Joch H, Yang Z, et al. Thrombin suppresses endothelial nitric oxide synthase and upregulates endothelin-converting enzyme-1 expression by distinct pathways: role of Rho/ROCK and mitogen-activated protein kinase. Circ Res. 2001;89(7):583–90.

    Article  CAS  PubMed  Google Scholar 

  55. Soe NN, Sowden M, Baskaran P, Smolock EM, Kim Y, Nigro P, et al. Cyclophilin A is required for angiotensin II-induced p47phox translocation to caveolae in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2013;33(9):2147–53.

    Article  CAS  PubMed  Google Scholar 

  56. Lassegue B, San MA, Griendling K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110:1364–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pushkarsky T, Zybarth G, Dubrovsky L, Yurchenko V, Tang H, Guo H, et al. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci U S A. 2001;98(11):6360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Satoh K, Satoh T, Kikuchi N, Omura J, Kurosawa R, Suzuki K, et al. Basigin mediates pulmonary hypertension by promoting inflammation and vascular smooth muscle cell proliferation. Circ Res. 2014;115(8):738–50.

    Article  CAS  PubMed  Google Scholar 

  59. Fukumoto Y, Shimokawa H. Rho-kinase inhibitors. Handb Exp Pharmacol. 2013;218:351–63.

    Article  CAS  PubMed  Google Scholar 

  60. Abe K, Shimokawa H, Morikawa K, Uwatoku T, Oi K, Matsumoto Y, et al. Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res. 2004;94(3):385–93.

    Article  CAS  PubMed  Google Scholar 

  61. Abe K, Tawara S, Oi K, Hizume T, Uwatoku T, Fukumoto Y, et al. Long-term inhibition of Rho-kinase ameliorates hypoxia-induced pulmonary hypertension in mice. J Cardiovasc Pharmacol. 2006;48(6):280–5.

    Article  CAS  PubMed  Google Scholar 

  62. Doe Z, Fukumoto Y, Takaki A, Tawara S, Ohashi J, Nakano M, et al. Evidence for Rho-kinase activation in patients with pulmonary arterial hypertension. Circ J. 2009;73(9):1731–9.

    Article  Google Scholar 

  63. Fukumoto Y, Matoba T, Ito A, Tanaka H, Kishi T, Hayashidani S, et al. Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart. 2005;91(3):391–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fukumoto Y, Yamada N, Matsubara H, Mizoguchi M, Uchino K, Yao A, et al. Double-blind, placebo-controlled clinical trial with a Rho-kinase inhibitor in pulmonary arterial hypertension. Circ J. 2013;77(10):2619–25.

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki J, Jin ZG, Meoli DF, Matoba T, Berk BC. Cyclophilin A is secreted by a vesicular pathway in vascular smooth muscle cells. Circ Res. 2006;98(6):811–7.

    Article  CAS  PubMed  Google Scholar 

  66. Dhaliwal JS, Casey DB, Greco AJ, Badejo Jr AM, Gallen TB, Murthy SN, et al. Rho kinase and Ca2+ entry mediate increased pulmonary and systemic vascular resistance in L-NAME-treated rats. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1306–13.

    Article  CAS  PubMed  Google Scholar 

  67. Asano T, Ikegaki I, Satoh S, Suzuki Y, Shibuya M, Takayasu M, et al. Mechanism of action of a novel antivasospasm drug, HA1077. J Pharmacol Exp Ther. 1987;241(3):1033–40.

    CAS  PubMed  Google Scholar 

  68. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–4.

    Article  CAS  PubMed  Google Scholar 

  69. Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000;351(Pt 1):95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shimokawa H, Seto M, Katsumata N, Amano M, Kozai T, Yamawaki T, et al. Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. Cardiovasc Res. 1999;43(4):1029–39.

    Article  CAS  PubMed  Google Scholar 

  71. Akama T, Dong C, Virtucio C, Sullivan D, Zhou Y, Zhang YK, et al. Linking phenotype to kinase: identification of a novel benzoxaborole hinge-binding motif for kinase inhibition and development of high-potency Rho-kinase inhibitors. J Pharmacol Exp Ther. 2013;347(3):615–25.

    Article  CAS  PubMed  Google Scholar 

  72. Akama T, Dong C, Virtucio C, Freund YR, Chen D, Orr MD, et al. Discovery and structure-activity relationships of 6-(benzoylamino)benzoxaboroles as orally active anti-inflammatory agents. Bioorg Med Chem Lett. 2013;23(21):5870–3.

    Article  CAS  PubMed  Google Scholar 

  73. Ellawindy A, Satoh K, Sunamura S, Kikuchi N, Suzuki K, Minami T, et al. Rho-Kinase inhibition during early cardiac development causes arrhythmogenic right ventricular cardiomyopathy in mice. Arterioscler Thromb Vasc Biol. 2015;35(10):2172–84.

    Article  CAS  PubMed  Google Scholar 

  74. Wei L, Roberts W, Wang L, Yamada M, Zhang S, Zhao Z, et al. Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development. 2001;128(15):2953–62.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Shimokawa M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Satoh, K., Sugimura, K., Shimokawa, H. (2017). Rho-Kinase as a Therapeutic Target for Pulmonary Hypertension. In: Fukumoto, Y. (eds) Diagnosis and Treatment of Pulmonary Hypertension. Springer, Singapore. https://doi.org/10.1007/978-981-287-840-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-840-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-839-7

  • Online ISBN: 978-981-287-840-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics