Advertisement

van Zon–Cohen Singularity and a Negative Inverse Temperature

  • Takahiro NemotoEmail author
Chapter
  • 382 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

An extended fluctuation theorem is the new type of fluctuation theorem for heat, proposed by van Zon and Cohen. In this chapter, we study it from the view point of rare trajectory of particle. We especially consider a Brownian particle on a moving periodic potential, and take a large limit of the period and the height of the potential, which describes the situation where the particle is trapped in a single potential. During this limit, we focus on the large deviation function of the heat dissipation of the particle that is the key ingredient of the extended fluctuation theorem, and also we focus on a biased ensemble that gives the statistics of rare-trajectory. From the boundary layer analysis, we construct these functions, and show that the singularity appears with the remarkable behaviour of the particle to climb up the potential, characterised by a negative temperature.

Keywords

Extended Fluctuation Theorem Large Deviation Function Non-Equilibrium Systems Brownian Particle Boundary Layer Analysis 

References

  1. 1.
    D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    J. Kurchan, J. Phys. A 31, 3719 (1998)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Maes, J. Stat. Phys. 95, 367 (1999)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    G.E. Crooks, Phys. Rev. E 60, 2721 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    K. Sekimoto, Lecture Notes in Physics, Stochastic Energetics, vol. 799 (Springer, Berlin, 2010)CrossRefGoogle Scholar
  8. 8.
    G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Phys. Rev. Lett. 89, 050601 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    R. van Zon, E.G.D. Cohen, Phys. Rev. E 67, 046102 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    R. van Zon, E.G.D. Cohen, Phys. Rev. Lett. 91, 110601 (2003)CrossRefGoogle Scholar
  11. 11.
    R. van Zon, E.G.D. Cohen, Phys. Rev. E 69, 056121 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    N. Garnier, S. Ciliberto, Phys. Rev. E 71, 060101(R) (2005)ADSCrossRefGoogle Scholar
  13. 13.
    F. Bonetto, G. Gallavotti, A. Giuliani, F. Zamponi, J. Stat. Phys. 123, 39 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Baiesi, T. Jacobs, C. Maes, N.S. Skantzos, Phys. Rev. E 74, 021111 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    P. Visco, J. Stat. Mech. P06006 (2006)Google Scholar
  16. 16.
    R.J. Harris, A. Rákos, G.M. Schütz, Europhys. Lett. 75, 227 (2006)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Rákos, R.J. Harris, J. Stat. Mech. P05005 (2008)Google Scholar
  18. 18.
    A. Puglisi, L. Rondoni, A. Vulpiani, J. Stat. Mech. P08010 (2006)Google Scholar
  19. 19.
    J.D. Noh, J.-M. Park, Phys. Rev. Lett. 108, 240603 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    T. Nemoto, Phys. Rev. E 85, 061124 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    L.P. Faucheux, G. Stolovitzky, A. Libchaber, Phys. Rev. E 51, 5239 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    V. Blickle, T. Speck, C. Lutz, U. Seifert, C. Bechinger, Phys. Rev. Lett. 98, 210601 (2007)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J.R. Gomez-Solano, A. Petrosyan, S. Ciliberto, R. Chetrite, K. Gawȩdzki, Phys. Rev. Lett. 103, 040601 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Nat. Phys. 6, 988 (2010)CrossRefGoogle Scholar
  25. 25.
    C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Springer, Berlin, 1983)CrossRefzbMATHGoogle Scholar
  26. 26.
    D. Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading, 1978)zbMATHGoogle Scholar
  27. 27.
    H. Touchette, Phys. Rep. 478, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    T. Sagawa, H. Hayakawa, Phys. Rev. E 84, 051110 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications (Springer, New York, 1998)CrossRefzbMATHGoogle Scholar
  30. 30.
    T. Nemoto, S. Sasa, Phys. Rev. E 84, 061113 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    R.L. Jack, P. Sollich, Prog. Theor. Phys. Suppl. 184, 304 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    T. Nemoto, S. Sasa, Phys. Rev. E 83, 030105(R) (2011)ADSCrossRefGoogle Scholar
  33. 33.
    C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations