Advertisement

Common Scaling Functions in Dynamical and Quantum Phase Transitions

  • Takahiro NemotoEmail author
Chapter
  • 375 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, based on the phenomenological structure for the large deviation principle, we study the dynamical phase transition taking place in the biased ensemble of time-averaged activity in Kinetically Constrained Models (KCMs). We focus on the mean-field version of these models, and construct an analytical expression of a Hamiltonian corresponding to this dynamical phase transition point. This Hamiltonian itself shows non-analyticity in infinite system size limit, from which the domain of the system variable is divided into two regions, such as active and inactive regions. Furthermore, from this singular Hamiltonian, we construct finite-size scaling functions around the dynamical phase transition point, and show that this functional form is universal between this dynamical phase transition and the quantum phase transition of transverse mean-field Ising model.

Keywords

Kinetically constrained models Dynamical phase transition Finite-size scaling in 1st order phase transition Transverse ising model Quantum phase transition 

References

  1. 1.
    J.P. Garrahan, R.L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, F. van Wijland, Phys. Rev. Lett. 98, 195702 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Garrahan, R.L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, F. van Wijland, J. Phys. A 42, 075007 (2009)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    J.P. Garrahan, P. Sollich, C. Toninelli, (2010) arXiv:1009.6113, which is a chapter in Ref. (L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, W. van Saarloos, (eds.), Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Oxford University Press, Oxford, 2011))
  4. 4.
    T. Bodineau, C. Toninelli, Commun. Math. Phys. 311, 357 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    T. Bodineau, V. Lecomte, C. Toninelli, J. Stat. Phys. 147, 1 (2012)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    R.L. Jack, P. Sollich, J. Phys. A 47, 015003 (2014)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Nemoto, S. Sasa, Phys. Rev. Lett. 112, 090602 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    C. Borgs, R. Kotecký, J. Stat. Phys. 61, 79 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    C. Borgs, R. Kotecký, Phys. Rev. Lett. 68, 1734 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    T. Jörg, F. Krzakala, J. Kurchan, A.C. Maggs, J. Pujos, Europhys. Lett. 89, 40004 (2010)CrossRefGoogle Scholar
  11. 11.
    V. Bapst, G. Semerjian, J. Stat. Mech. (2012) P06007Google Scholar
  12. 12.
    T. Nemoto, V. Lecomte, S. Sasa, F. van Wijland, J. Stat. Mech. (2014) P10001Google Scholar
  13. 13.
    C. Giardina, J. Kurchan, L. Peliti, Phys. Rev. Lett. 96, 120603 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    C. Giardina, J. Kurchan, V. Lecomte, J. Tailleur, J. Stat. Phys. 145, 787 (2011)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Campostrini, J. Nespolo, A. Pelissetto, E. Vicari, Phys. Rev. Lett. 113, 070402 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations