Advertisement

Iterative Measurement-Feedback Procedure for Large Deviation Statistics

  • Takahiro NemotoEmail author
Chapter
  • 382 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we study the phenomenological structure for the large deviation principle in time-averaged quantities defined on continuous-time Markov process. Based on the idea of thermodynamic integration, we propose a method to calculate the large deviation function, constituted of measurements and feedbacks, and apply it to many-body lattice gas models for non equilibrium process. To the best of our knowledge, this is the first success of the calculation of large deviation function in non-equilibrium systems without relying on numerical technique such as copying rare-events, with keeping a future possibility of its application to real experiments.

Keywords

Large deviation function Large deviation principle Rare event sampling Non-equilibrium systems ASEP (Asymmetric Simple Exclusion Process) KCMs (Kinetically Constrained Models) 

References

  1. 1.
    G.E. Crooks, Phys. Rev. E 60, 2721 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    J. Kurchan, J. Phys. A 31, 3719 (1998)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    C. Maes, J. Stat. Phys. 95, 367 (1999)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Bodineau, B. Derrida, Phys. Rev. Lett. 92, 180601 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    T. Bodineau, B. Derrida, J. Stat. Phys. 123, 277 (2006)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    T. Bodineau, B. Derrida, C. R. Phys. 8, 540 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    B. Derrida, J. Stat. Mech. P07023 (2007)Google Scholar
  11. 11.
    B. Derrida, Phys. Rep. 301, 65 (1998)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Derrida, J.L. Lebowitz, Phys. Rev. Lett. 80, 209 (1998)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, Phys. Rev. Lett. 94, 030601 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, J. Stat. Phys. 123, 237 (2006)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J.P. Garrahan, P. Sollich, C. Toninelli, arXiv:1009.6113 (2010), which is a chapter in Ref. L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, W. van Saarloos (eds.), Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Oxford University Press, Oxford, 2011)
  16. 16.
    J.P. Garrahan, R.L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, F. van Wijland, Phys. Rev. Lett. 98, 195702 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    M. Gorissen, A. Lazarescu, K. Mallick, C. Vanderzande, Phys. Rev. Lett. 109, 170601 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    C. Maes, K. Netočný, B. Wynants, Phys. Rev. Lett. 107, 010601 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    A. Lazarescu, K. Mallick, J. Phys. A: Math. Theor. 44, 315001 (2011)CrossRefGoogle Scholar
  20. 20.
    R. Chetrite, H. Touchette (2014). arXiv:1405.5157
  21. 21.
    R. Chetrite, H. Touchette, Phys. Rev. Lett. 111, 120601 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    R.M.L. Evans, Phys. Rev. Lett. 92, 150601 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    R.L. Jack, P. Sollich, Prog. Theor. Phys. Suppl. 184, 304 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    T. Nemoto, S. Sasa, Phys. Rev. E 83, 030105(R) (2011)ADSCrossRefGoogle Scholar
  25. 25.
    T. Nemoto, S. Sasa, Phys. Rev. E 84, 061113 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    S. Sasa, Phys. Scr. 86, 058514-1-3 (2012)CrossRefGoogle Scholar
  27. 27.
    T. Nemoto, S. Sasa, Phys. Rev. Lett. 112, 090602 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Springer, Berlin, 1983)CrossRefzbMATHGoogle Scholar
  29. 29.
    H. Touchette, Phys. Rep. 478, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    E. Seneta, Non-Negative Matrices and Markov Chains, 2nd edn. (Springer, New York, 2006)zbMATHGoogle Scholar
  31. 31.
    M.D. Donsker, S.R. Varadhan, Commun. Pure Appl. Math. 28, 1 (1975)CrossRefGoogle Scholar
  32. 32.
    R. van Zon, E.G.D. Cohen, Phys. Rev. Lett. 91, 110601 (2003)CrossRefGoogle Scholar
  33. 33.
    R. van Zon, E.G.D. Cohen, Phys. Rev. E 69, 056121 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications (Springer, New York, 1998)CrossRefzbMATHGoogle Scholar
  35. 35.
    A. Parmeggiani, Physics 5, 118 (2012)CrossRefGoogle Scholar
  36. 36.
    In preparation of submitting paperGoogle Scholar
  37. 37.
    G.H. Fredrickson, H.C. Andersen, Phys. Rev. Lett. 53, 1244 (1984)ADSCrossRefGoogle Scholar
  38. 38.
    G.H. Fredrickson, H.C. Andersen, J. Chem. Phys. 83, 5822 (1985)ADSCrossRefGoogle Scholar
  39. 39.
    F. Ritort, P. Sollich, Adv. Phys. 52, 219 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    J.P. Garrahan, R.L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, F. van Wijland, J. Phys. A 42, 075007 (2009)Google Scholar
  41. 41.
    T. Bodineau, V. Lecomte, C. Toninelli, J. Stat. Phys. 147, 1 (2012)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    T. Bodineau, C. Toninelli, Commun. Math. Phys. 311, 357 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    C. Giardina, J. Kurchan, L. Peliti, Phys. Rev. Lett. 96, 120603 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    C. Giardina, J. Kurchan, V. Lecomte, J. Tailleur, J. Stat. Phys. 145, 787 (2011)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    R.L. Jack, P. Sollich, J. Phys. A 47, 015003 (2014)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations