Skip to main content

Terahertz Antenna Technology for Space Applications

  • Chapter

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSCE))

Abstract

The terahertz (THz) band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics corresponding with the progress in semiconductor technology has enabled researchers to exploit hitherto unexplored domains including satellite communication, biomedical imaging, security systems, etc. This book, explores the terahertz antenna technology toward implementation of compact, consistent, and cheap terahertz sources, as well as the high-sensitivity terahertz detectors. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide, along with possibilities of using this technology in deep space networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akyildiz, F., J.M. Jornet, and C. Han. 2014. Terahertz band: next frontier for wireless communications. Physical Communication 12: 16–32.

    Article  Google Scholar 

  • Bowen, J.W., S. Hadjiloucas, B.M. Towlson, L.S. Karatzas, S.T.G. Wootton, N.J. Cronin, S.R. Davies, C.E. McIntosh, J.M. Chamberlain, R.E. Miles and R.D. Pollard. 2006. Micromachined waveguide antennas for 1.6 THz. Electronics Letters 42: 842–843.

    Google Scholar 

  • Bruston, J., E. Schlecht, A. Maestrini, F. Maiwald, and S.C. Martin. 2000. Development of 200 GHz to 2.7 THz multiplier chains for submillimeter-wave heterodyne receivers. Proceedings of SPIE 4013: 285–295.

    Article  Google Scholar 

  • Carrasco, E., and J. Perruisseau-Carrier. 2013. Reflectarray antenna at terahertz using graphene. IEEE Antennas and Wireless Propagation Letters 12: 253–257.

    Article  Google Scholar 

  • Chen Wang, Xu, W. Sheng Zhao, J. Hu, and W. Yan Yin. 2015. Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface. IEEE Transactions on Nanotechnology 14: 62–69.

    Article  Google Scholar 

  • Chattopadhyay, G. 2010. Terahertz antennas and systems for space borne platforms. Proceedings of 4th European Conference on Antennas and Propagation (EUCAP), pp. 1–7.

    Google Scholar 

  • Danana, B., B. Choudhury, and R.M. Jha. 2014. Design of high gain microstrip antenna for THz wireless communication. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 3(5): 711–716.

    Google Scholar 

  • de Maagt, P., B.A. Conchillo, L. Minelli, I. Ederra, R. Gonzalo, and A. Reynolds. 2003. Photonic bandgap antennas and components for microwave and sub-millimeter wave applications. IEEE Transactions on Antennas and Propagation 51(10): 2667–2677.

    Article  Google Scholar 

  • Dragoman, M., A. A. Muller, D. Dragoman, F. Coccetti and R. Plana. 2010. Terahertz antenna based on graphene. Journal of Applied Physics 107: 104313(1)–104313(3).

    Google Scholar 

  • Fitch, M.J., and R. Osiander. 2004. Terahertz waves for communications and sensing. Johns Hopkins APL Technical Digest 25(4): 348–355.

    Google Scholar 

  • Gaidis, M. C. 2000. Space-based applications of far-infrared systems. Proceedings of 8th International Conference on Terahertz Electronics, pp. 125–128.

    Google Scholar 

  • Gaidis, M.C., H.M. Pickett, C.D. Smith, S.C. Martin, R.P. Smith, and P.H. Siegel. 2000. A 2.5 THz receiver front end for space borne applications. IEEE Transactions on Microwave Theory and Technology 48(4): 733–739.

    Article  Google Scholar 

  • Gatti, M. 2008. A phased array antenna for deep space communications. IEEE Aerospace Conference 8 p.

    Google Scholar 

  • Goldin, A., J. J. Bock, C. Hunt, A. Lange, H. G. LeDuc, A. Vayonakis,and J. Zmuidzinas. 2002. SAMBA: Superconducting antenna-coupled multi-frequency bolometric array. Proceedings of far-IR, submm, and mm Detector Workshop, vol. NASA CP/211408. Washington DC: NASA.

    Google Scholar 

  • Grade, J., P. Haydon, and D. van der Weide. 2007. Electronic terahertz antennas and probes for spectroscopic detection and diagnostics. Proceedings of the IEEE 95(8): 1583–1591.

    Article  Google Scholar 

  • Han, H., J. Yuan, and J. Tong. 2015. Design of THz space application system. Journal of Computer and Communications 3: 61–65.

    Article  Google Scholar 

  • Hanson, G.W., and P. de Maagt. 2007. Guest editorial for the special issue on optical and THz antenna technology. IEEE Transactions on Antennas and Propagation 55(11): 2942–2943.

    Article  Google Scholar 

  • Huang, K.C., and Z. Wang. 2011. Terahertz terabit wireless communication. IEEE Microwave Magazine 12(4): 108–116.

    Article  Google Scholar 

  • Huang, Y., N. Khibiani, Y. Shen, and D. Li. 2011. Terahertz photoconductive antenna efficiency. Proceedings of International Workshop on Antenna Technology (iWAT), pp. 152–156.

    Google Scholar 

  • Jih, C., S. U. Hwu, and K. B. deSilva. 2013. Terahertz (THz) wireless systems for space applications. Proceedings of IEEE Sensors Applications Symposium, 5p.

    Google Scholar 

  • Jornet, J.M., and I.F. Akyildiz. 2013. Graphene-based plasmonic nano-antenna for terahertz band communication in nano-networks. IEEE Journal on Selected Areas in Communications/Supplement 31(12): 685–694.

    Article  Google Scholar 

  • Khiabani, N., Y. Huang, Y. Shen, S. Boyes, and Q. Xu. 2013. A novel simulation method for THz photoconductive antenna characterization. Proceedings of 7th European Conference on Antennas and Propagation (EUCAP), pp. 751–754.

    Google Scholar 

  • Li, D., and Y. Huang. 2006. Comparison of terahertz antennas. Proceedings of First European Conference on Antennas and Propagation, pp. 1–5.

    Google Scholar 

  • Li, D., Y. Huang, Y, Shen, A. Boland-Thoms, and A. Vickers. 2010. Development of a THz photoconductive horn antenna. Proceedings of Fourth European Conference on Antennas and Propagation, pp. 1–5.

    Google Scholar 

  • Liu, Y., S. Li, S. Zhu, and X. Lv. 2010. New two-dimensional PBG structures for THz transmission line and antenna integrated design based on MEMS technology. Proceedings of the IEEE, pp. 1683–1686.

    Google Scholar 

  • Llatser, I., C. Kremers, D. N. Chigrin, J. M. Jornet, M. C. Lemme, A. Cabellos Aparicio, and E. Alarcon. 2012. Characterization of graphene-based nano-antennas in the terahertz band. Proceedings of 6th European Conference on Antennas and Propagation (EUCAP), pp. 194–198.

    Google Scholar 

  • Llombart, N., C. Lee, M. Alonso-delPino, G. Chattopadhyay, C. Jung-Kubiak, L. Jofre, and I. Mehdi. 2013. Silicon micro-machined lens antenna for THz integrated heterodyne arrays. IEEE Transactions on Terahertz Science and Technology 3(5): 515–523.

    Article  Google Scholar 

  • Llombart, N. and G. Chattopadhyay. 2010. Extended hemispherical silicon lens excited by a leaky wave waveguide feed. Proceedings of the European Conference on Antennas and Propagation, Barcelona.

    Google Scholar 

  • Llombart, N., A. Skalare, J. Gill, and P. H. Siegel. 2008. High efficiency submillimeter-wave imaging array. Proceedings of the 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena.

    Google Scholar 

  • Moon, K., H. Han, and I. Park. 2005. Terahertz folded half wavelength dipole antenna for high output power. Proceedings of International Topical Meeting on Microwave Photonics, pp. 301–304.

    Google Scholar 

  • Nagatsuma, T., H.J. Song, and Y. Kado. 2010. Challenges for ultrahigh-speed wireless communications using terahertz waves. Terahertz Science and Technology 3(2): 55–65.

    Google Scholar 

  • Raisanen, A. V. 1998. Challenges in THz technology: applications, receivers and antenna testing. Proceedings of 28th European Microwave Conference Amsterdam, vol. 1, pp. 126–131.

    Google Scholar 

  • Räisänen, A., J. Ala-Laurinaho, A. Karttunen, J. Mallat, A. Tamminen, and M. Vaaja. 2010. Measurements of high-gain antennas at THz frequencies. Proceedings of the 4th European Conference on Antennas and Propagation (EUCAP), pp. 1–3.

    Google Scholar 

  • Räisänen, A.V., J. Ala-Laurinaho, J. Häkli, A. Karttunen, T. Koskinen, A. Lönnqvist, J. Mallat, E. Noponen, A. Tamminen, M. Vaaja, and V. Viikari. 2007. How to test a high-gain antenna at THz frequencies?. Proceedings of 19th International Conference on Applied Electromagnetics and Communications, ICECom, pp. 1–3.

    Google Scholar 

  • Sánchez-Escuderos, D., M. Ferrando-Bataller, A. Berenguer, and M. Baquero-Escudero. 2011. Design of low-loss waveguides and devices at THz frequencies using EBG structures. Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 452–456.

    Google Scholar 

  • Schneider, T., A. Wiatrek, S. Preussler, M. Grigat, and R.P. Braun. 2012. Link budget analysis for terahertz fixed wireless links. IEEE Transactions on Terahertz Science and Technology 2(2): 250–256.

    Article  Google Scholar 

  • Siegel, P. H. 2010. THz for space: the golden age. Proceedings of IEEE MTT-S International Microwave Symposium Digest (MTT), pp. 816–819.

    Google Scholar 

  • Siegel, P. H., P. de Maagt, and A. I. Zaghloul. 2006. Antennas for terahertz applications. Proceedings of IEEE Antennas Propagation Symposium, pp. 2383–2386.

    Google Scholar 

  • Siegel, P.H. 2007. THz instruments for space. IEEE Transactions on Antennas and Propagation 55(11): 2957–2965.

    Article  Google Scholar 

  • Song, H.J., and T. Nagatsuma. 2011. Present and future of terahertz communications. IEEE Transactions on Terahertz Science and Technology 1(1): 256–263.

    Article  Google Scholar 

  • Syed, W.H., G. Fiorentino, D. Cavallo, M. Spirito, P.M. Sarro, and A. Neto. 2015. Design, fabrication, and measurements of a 0.3 THz on-chip double slot antenna enhanced by artificial dielectrics. IEEE Transactions on Terahertz Science and Technology 5(2): 288–298.

    Article  Google Scholar 

  • Thomas, B., C. Lee, A. Peralta, J. Gill, G. Chattopadhyay, E. Schlecht, R. Lin, and I. Mehdi. 2010. 600 GHz silicon-based integrated receiver using GaAs MMIC membrane planar Schottky diodes. Proceedings of the 21st International Symposium on Space Terahertz Technology.

    Google Scholar 

  • Tonouchi, M. 2007. Cutting edge terahertz technology. Nature Photonics 1: 97–105.

    Article  Google Scholar 

  • Wild, W., A. Baryshev, T. de Graauw, N. Kardashev, S. Likhachev, G. Goltsman, and V. Koshelets. 2008. Instrumentation for Millimetron—a large space antenna for THz astronomy. Proceedings of the 19th International Symposium on Space Terahertz Technology, pp. 186–191.

    Google Scholar 

  • Wu, K., Y. J. Cheng, T. Djerafi, and W. Hong. 2012. Substrate integrated millimetre wave and terahertz antenna technology. Proceedings of the IEEE, vol. 100, no. 7.

    Google Scholar 

  • Xu, X., X. Zhang, Z. Zhou, T. Gao, Q. Zhang, Y. Lin, and L. Sun. 2013. Terahertz cassergrain reflector antenna. Proceedings of the International Symposium on Antennas & Propagation (ISAP), vol. 2, pp. 969–971.

    Google Scholar 

  • Yablonovitch, E. 1993. Photonic band-gap structures. Journal of the optical society of America 10(2): 283–295.

    Article  Google Scholar 

  • Yong, L., L. Xin, and Y. Yong. 2006. Research and design of terahertz horn antenna based on MEMS technology. Proceedings of 7th International Symposium on Antennas, Propagation and EM Theory, pp. 1–3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balamati Choudhury .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Choudhury, B., Sonde, A., Jha, R. (2016). Terahertz Antenna Technology for Space Applications. In: Terahertz Antenna Technology for Space Applications. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-287-799-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-799-4_1

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-798-7

  • Online ISBN: 978-981-287-799-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics