Skip to main content

Weak Lensing Morphological Analysis

  • Chapter
  • First Online:
  • 660 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we summarize our studies on the true utility and applicability of weak lensing Minkowski functionals (MFs) in terms of statistical tool for precision cosmology. We extended the previous morphological studies by including various observational effects such as sky masking, systematics associated with shape measurement, photometric redshift errors, and shear calibration correction. We generated a large set of mock cosmic shear data with numerical simulations to study possible systematics in detail one by one. We found that each observational effect could induce the biased parameter estimation in upcoming galaxy imaging surveys. We then applied all the method developed and examined in our previous studies to the real data obtained by Canada-France-Hawaii Telescope Lensing survey (CFHTLenS). As shown in this chapter, we found that lensing MFs can successfully break degeneracies in parameter constraints from lensing data set alone. These works are useful to properly analyze the data and to accurately extract cosmological information from them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We generate the Gaussian convergence maps for \(\varLambda \) CDM cosmology. In Gaussian simulation, we use the fitting formula of Ref. [8] to calculate the matter power spectrum P(kz). We then obtain the convergence power spectrum by integrating the matter power spectrum over redshift z with a weighting function for the source redshift \(z_\mathrm{source} =1\). Each map is defined on \(2048^2\) grid points with an angular grid size of 0.15 arcmin.

  2. 2.

    http://smoka.nao.ac.jp/.

  3. 3.

    For the simulations, the authors in Ref. [16] adopted the cosmological model which is consistent with WMAP three-years results [17].

  4. 4.

    In principle, one can use regions with \(x>3\) as well. Such regions usually correspond to the positions of massive dark matter halos, which are thought to be sensitive to cosmological parameters. On the other hand, such regions are extremely rare, and thus the first derivatives in Eq. (4.16) are not evaluated accurately even with our large number of \({\mathscr {K}}\) maps. We thus do not use high \({\mathscr {K}}\) regions with \(x>3\) in the analysis.

  5. 5.

    We have also examined which MFs (\(V_0, V_1, V_2\)) cause this trend. We have performed likelihood analysis using each MF only. Both \(V_{1}\) and \(V_{2}\) prefer lower \(w_{0}\). The 68 \(\%\) marginalized constraints on \(w_{0}\) using each MF are found to be \(-0.30\pm ^{0.77}_{0.84}\), \(-3.31\pm {0.60}\), and \(-2.48\pm ^{0.91}_{0.84}\) for \(V_{0}\), \(V_{1}\), and \(V_{2}\), respectively.

References

  1. M. Bolzonella, J.-M. Miralles, R. Pello’, Photometric redshifts based on standard SED fitting procedures. Astron. Astrophys. 363, 476–492 (2000). astro-ph/0003380

  2. N. Kaiser, A new shear estimator for weak-lensing observations. Astrophys. J. 537, 555–577 (2000). astro-ph/9904003

    Google Scholar 

  3. T. Erben, L. Van Waerbeke, E. Bertin, Y. Mellier, P. Schneider, How accurately can we measure weak gravitational shear? Astron. Astrophys. 366, 717–735 (2001). astro-ph/0007021

    Google Scholar 

  4. C. Hirata, U. Seljak, Shear calibration biases in weak-lensing surveys. Mon. Not. Roy. Astron. Soc. 343, 459–480 (2003). astro-ph/0301054

    Google Scholar 

  5. D. Huterer, M. Takada, G. Bernstein, B. Jain, Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration. Mon. Not. Roy. Astron. Soc. 366, 101–114 (2006). astro-ph/0506030

    Google Scholar 

  6. C. Hikage, M. Takada, T. Hamana, D. Spergel, Shear power spectrum reconstruction using the pseudo-spectrum method. Mon. Not. Roy. Astron. Soc. 412, 65–74 (2011). arXiv:1004.3542

    Google Scholar 

  7. D.H. Weinberg, J.R. Gott, III, A.L. Melott, The topology of large-scale structure. I—Topology and the random phase hypothesis. Astrophys. J. 321, 2–27 (1987)

    Google Scholar 

  8. R.E. Smith, J.A. Peacock, A. Jenkins, S.D.M. White, C.S. Frenk, F.R. Pearce, P.A. Thomas, G. Efstathiou, H.M.P. Couchman, Stable clustering, the halo model and non-linear cosmological power spectra. Mon. Not. Roy. Astron. Soc. 341, 1311–1332 (2003). astro-ph/0207664

    Google Scholar 

  9. T. Hamana, M. Oguri, M. Shirasaki, M. Sato, Scatter and bias in weak lensing selected clusters. Mon. Not. Roy. Astron. Soc. 425, 2287–2298 (2012). arXiv:1204.6117

    Google Scholar 

  10. E. Bertin, Automatic Astrometric and Photometric Calibration with SCAMP, eds. by C. Gabriel, C. Arviset, D. Ponz, S. Enrique. Astronomical Data Analysis Software and Systems XV, vol. 351 of Astronomical Society of the Pacific Conference Series (2006), p. 112

    Google Scholar 

  11. E. Bertin, Y. Mellier, M. Radovich, G. Missonnier, P. Didelon, B. Morin, The TERAPIX Pipeline, eds. by D.A. Bohlender, D. Durand, T.H. Handley. Astronomical Data Analysis Software and Systems XI, vol. 281 of Astronomical Society of the Pacific Conference Series (2002), p. 228

    Google Scholar 

  12. E. Bertin, S. Arnouts, SExtractor: software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996)

    Google Scholar 

  13. N. Kaiser, G. Squires, T. Broadhurst, A method for weak lensing observations. Astrophys. J. 449, 460 (1995). astro-ph/9411005

    Google Scholar 

  14. G. A. Luppino, N. Kaiser, Detection of weak lensing by a cluster of galaxies at Z = 0.83. Astrophys. J. 475, 20 (1997). astro-ph/9601194

    Google Scholar 

  15. H. Hoekstra, M. Franx, K. Kuijken, G. Squires, Weak lensing analysis of CL 1358+62 using hubble space telescope observations. Astrophys. J. 504, 636 (1998)

    Google Scholar 

  16. M. Sato, T. Hamana, R. Takahashi, M. Takada, N. Yoshida, T. Matsubara, N. Sugiyama, Simulations of wide-field weak lensing surveys. i. Basic statistics and non-gaussian effects. Astrophys. J. 701, 945–954 (2009). arXiv:0906.2237

    Google Scholar 

  17. D.N. Spergel, R. Bean, O. Doré, M.R. Nolta, C.L. Bennett, J. Dunkley, G. Hinshaw, N. Jarosik, E. Komatsu, L. Page, H.V. Peiris, L. Verde, M. Halpern, R.S. Hill, A. Kogut, M. Limon, S.S. Meyer, N. Odegard, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, WMAP Collaboration, Wilkinson microwave anisotropy probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007). astro-ph/0603449

  18. E.A. Lim, D. Simon, Can we detect Hot or Cold spots in the CMB with Minkowski Functionals? JCAP 1201, 048 (2012). arXiv:1103.4300

    Article  ADS  Google Scholar 

  19. S. Winitzki, A. Kosowsky, Minkowski functional description of microwave background Gaussianity. New Astron. 3, 75–99 (1998). astro-ph/9710164

    Google Scholar 

  20. S. Wang, Z. Haiman, M. May, Constraining cosmology with high-convergence regions in weak lensing surveys. Astrophys. J. 691, 547–559 (2009). arXiv:0809.4052

    Google Scholar 

  21. C. Heymans, L. Van Waerbeke, L. Miller, T. Erben, H. Hildebrandt, H. Hoekstra, T.D. Kitching, Y. Mellier, P. Simon, C. Bonnett, J. Coupon, L. Fu, J. Harnois Déraps, M.J. Hudson, M. Kilbinger, K. Kuijken, B. Rowe, T. Schrabback, E. Semboloni, E. van Uitert, S. Vafaei, M. Velander, CFHTLenS: the Canada-France-Hawaii telescope lensing survey. Mon. Not. Roy. Astron. Soc. 427, 146–166 (2012). arXiv:1210.0032

    Google Scholar 

  22. T. Erben, H. Hildebrandt, L. Miller, L. van Waerbeke, C. Heymans, H. Hoekstra, T.D. Kitching, Y. Mellier, J. Benjamin, C. Blake, C. Bonnett, O. Cordes, J. Coupon, L. Fu, R. Gavazzi, B. Gillis, E. Grocutt, S.D.J. Gwyn, K. Holhjem, M.J. Hudson, M. Kilbinger, K. Kuijken, M. Milkeraitis, B.T.P. Rowe, T. Schrabback, E. Semboloni, P. Simon, M. Smit, O. Toader, S. Vafaei, E. van Uitert, M. Velander, CFHTLenS: the Canada-France-Hawaii telescope lensing survey—imaging data and catalogue products. Mon. Not. Roy. Astron. Soc. 433, 2545–2563 (2013). arXiv:1210.8156

  23. L. Miller, C. Heymans, T. D. Kitching, L. van Waerbeke, T. Erben, H. Hildebrandt, H. Hoekstra, Y. Mellier, B.T.P. Rowe, J. Coupon, J.P. Dietrich, L. Fu, J. Harnois-Déraps, M.J. Hudson, M. Kilbinger, K. Kuijken, T. Schrabback, E. Semboloni, S. Vafaei, M. Velander, Bayesian galaxy shape measurement for weak lensing surveys—III. Application to the Canada-France-Hawaii telescope lensing survey. Mon. Not. Roy. Astron. Soc. 429, 2858–2880 (2013). arXiv:1210.8201

    Google Scholar 

  24. H. Hildebrandt, T. Erben, K. Kuijken, L. van Waerbeke, C. Heymans, et al., CFHTLenS: improving the quality of photometric redshifts with precision photometry. Mon. Not. Roy. Astron. Soc. 421, 2355–2367 (2012). arXiv:1111.4434

    Google Scholar 

  25. J. Benjamin, L. Van Waerbeke, C. Heymans, M. Kilbinger, T. Erben, H. Hildebrandt, H. Hoekstra, T. D. Kitching, Y. Mellier, L. Miller, B. Rowe, T. Schrabback, F. Simpson, J. Coupon, L. Fu, J. Harnois-Déraps, M.J. Hudson, K. Kuijken, E. Semboloni, S. Vafaei, M. Velander, CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions. Mon. Not. Roy. Astron. Soc. 431, 1547–1564 (2013). arXiv:1212.3327

    Google Scholar 

  26. N. Benítez, Bayesian photometric redshift estimation. Astrophys. J. 536, 571–583 (2000). astro-ph/9811189

    Google Scholar 

  27. L. Van Waerbeke, J. Benjamin, T. Erben, C. Heymans, H. Hildebrandt, H. Hoekstra, T.D. Kitching, Y. Mellier, L. Miller, J. Coupon, J. Harnois-Déraps, L. Fu, M. Hudson, M. Kilbinger, K. Kuijken, B. Rowe, T. Schrabback, E. Semboloni, S. Vafaei, E. van Uitert, M. Velander, CFHTLenS: mapping the large-scale structure with gravitational lensing. Mon. Not. Roy. Astron. Soc. 433, 3373–3388 (2013). arXiv:1303.1806

  28. R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, M. Oguri, Revising the Halofit model for the nonlinear matter power spectrum. Astrophys. J. 761, 152 (2012). arXiv:1208.2701

    Google Scholar 

  29. T. Eifler, P. Schneider, J. Hartlap, Dependence of cosmic shear covariances on cosmology. Impact on parameter estimation. Astron. Astrophys. 502, 721–731 (2009). arXiv:0810.4254

    Google Scholar 

  30. M. Kilbinger, L. Fu, C. Heymans, F. Simpson, J. Benjamin, T. Erben, J. Harnois-Déraps, H. Hoekstra, H. Hildebrandt, T. D. Kitching, Y. Mellier, L. Miller, L. Van Waerbeke, K. Benabed, C. Bonnett, J. Coupon, M.J. Hudson, K. Kuijken, B. Rowe, T. Schrabback, E. Semboloni, S. Vafaei, M. Velander, CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing. Mon. Not. Roy. Astron. Soc. 430, 2200–2220 (2013). astro-ph/1212.3338

    Google Scholar 

  31. J. Hartlap, P. Simon, P. Schneider, Why your model parameter confidences might be too optimistic. Unbiased estimation of the inverse covariance matrix. Astron. Astrophys. 464, 399–404 (2007). arXiv:0608064

    Google Scholar 

  32. J.M. Kratochvil, E.A. Lim, S. Wang, Z. Haiman, M. May, K. Huffenberger, Probing cosmology with weak lensing minkowski functionals. Phys. Rev. D 85, 103513 (2012). arXiv:1109.6334

    Article  ADS  Google Scholar 

  33. M. Shirasaki, N. Yoshida, Statistical and systematic errors in the measurement of weak-lensing minkowski functionals: application to the Canada-France-Hawaii lensing survey. Astrophys. J. 786, 43 (2014). arXiv:1312.5032

    Google Scholar 

  34. C.L. Bennett, D. Larson, J.L. Weiland, N. Jarosik, G. Hinshaw, N. Odegard, K.M. Smith, R.S. Hill, B. Gold, M. Halpern, E. Komatsu, M.R. Nolta, L. Page, D.N. Spergel, E. Wollack, J. Dunkley, A. Kogut, M. Limon, S.S. Meyer, G.S. Tucker, E.L. Wright, Nine-year wilkinson microwave anisotropy probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. 208, 20 (2013). arXiv:1212.5225

    Google Scholar 

  35. W.M.A.P. Collaboration, G. Hinshaw, D. Larson, E. Komatsu, D.N. Spergel, C.L. Bennett, J. Dunkley, M.R. Nolta, M. Halpern, R.S. Hill, N. Odegard, L. Page, K.M. Smith, J.L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, G.S. Tucker, E. Wollack, E.L. Wright, Nine-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. 208, 19 (2013). arXiv:1212.5226

    Article  ADS  Google Scholar 

  36. M. Kilbinger, K. Benabed, O. Cappe, J.-F. Cardoso, J. Coupon, G. Fort, H.J. McCracken, S. Prunet, C.P. Robert, D. Wraith, CosmoPMC: cosmology population monte carlo, ArXiv e-prints (2011). arXiv:1101.0950

  37. D. Wraith, M. Kilbinger, K. Benabed, O. Cappé, J.-F. Cardoso, G. Fort, S. Prunet, C.P. Robert, Estimation of cosmological parameters using adaptive importance sampling. Phys. Rev. D80, 023507 (2009). arXiv:0903.0837

  38. M. Sato, K. Ichiki, T.T. Takeuchi, Precise estimation of cosmological parameters using a more accurate likelihood function. Phys. Rev. Lett. 105, 251301 (2010). arXiv:1011.4996

  39. J.N. Fry, The Galaxy correlation hierarchy in perturbation theory. Astrophys. J. 279, 499–510 (1984)

    Google Scholar 

  40. L. Fu, M. Kilbinger, T. Erben, C. Heymans, H. Hildebrandt, H. Hoekstra, T.D. Kitching, Y. Mellier, L. Miller, E. Semboloni, P. Simon, L. Van Waerbeke, J. Coupon, J. Harnois-Déraps, M.J. Hudson, K. Kuijken, B. Rowe, T. Schrabback, S. Vafaei, M. Velander, CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations. Mon. Not. Roy. Astron. Soc. 441, 2725–2743 (2014). arXiv:1404.5469

    Google Scholar 

  41. M. Shirasaki, N. Yoshida, T. Hamana, Effect of masked regions on weak-lensing statistics. Astrophys. J. 774, 111 (2013). arXiv:1304.2164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Shirasaki .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Shirasaki, M. (2016). Weak Lensing Morphological Analysis. In: Probing Cosmic Dark Matter and Dark Energy with Weak Gravitational Lensing Statistics. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-287-796-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-796-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-795-6

  • Online ISBN: 978-981-287-796-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics