Skip to main content

Homogeneous Catalysts for the Hydrodeoxygenation of Biomass-Derived Carbohydrate Feedstocks

  • Chapter
Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

The use of homogeneous rather than heterogeneous catalysts for the hydrodeoxygenation of sugars, sugar alcohols, and their condensates such as furfural, 5-hydroxymethylfurfural, levulinic acid, and isosorbide may offer reaction pathways that have distinct advantages, notably with respect to catalyst deactivation by coking and fouling as observed on many heterogeneous systems with these highly reactive and polar substrates. Homogeneous systems, however, also face unique challenges in ligand, catalyst, and process design. The catalyst systems employed will have to be stable to the required aqueous acidic high-temperature (T > 150 °C) reaction conditions while exhibiting activities that make them kinetically competent over acid-catalyzed decomposition and oligo- and polymerization reactions leading to humin formation. For each of the hydrodeoxygenation reaction cascades for the C3 (glycerol), C4 (erythritol), C5 (xylose and derivatives or levulinic acid), and C6 (glucose and derivatives) value chains, comparatively few homogeneous catalyst systems have been evaluated to date. Key issues remain the thermal and redox stability of the complexes employed against decomposition and reduction to bulk metal acting as a heterogeneous catalysts and the recovery and recycling of the catalyst from the often very complex reaction and product mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlaf M (2006) Selective deoxygenation of sugar polyols to alpha,omega-diols and other oxygen content reduced materials – a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis. J Chem Soc Dalton Trans 39:4645–4653

    Article  Google Scholar 

  2. Schiweck H et al (2000), Sugar alcohols. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  3. Sabatier P, Mailhe A (1909) New applications of the general method of hydrogenation on divided metals. Annales De Chimie Et De Phys 16:70–107

    Google Scholar 

  4. Schuette HA, Thomas RW (1930) Normal valerolactone. III. Its preparation by the catalytic reduction of levulinic acid with hydrogen in the presence of platinum oxide. J Am Chem Soc 52:3010–3012

    Article  Google Scholar 

  5. Schiavo V, Descotes G, Mentech J (1991) Catalytic-hydrogenation of 5-hydroxymethylfurfural in aqueous-medium. Bull Soc Chim Fr 128(5):704–711

    Google Scholar 

  6. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  Google Scholar 

  7. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502

    Article  Google Scholar 

  8. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513

    Article  Google Scholar 

  9. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41(24):8075–8098

    Article  Google Scholar 

  10. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558

    Article  Google Scholar 

  11. Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16(2):516–547

    Article  Google Scholar 

  12. Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114(3):1827–1870

    Article  Google Scholar 

  13. Xiong H, Pham HN, Datye AK (2014) Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. Green Chem 16:4627–4643

    Article  Google Scholar 

  14. Deuss PJ, Barta K, de Vries JG (2014) Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catal Sci Technol 4(5):1174–1196

    Article  Google Scholar 

  15. Cornils B, Herrmann WA (1996) Applied homogeneous catalysis with organometallic compounds, vol 1. VCH, Weinheim

    Book  Google Scholar 

  16. Copes JP, McKinley C (1954) Production of 1,4-butanediol from Tetrahydrofuran, General Aniline & Film Corporation, US Patent 2,686,817

    Google Scholar 

  17. Martell AE, Hancock RD, Motekaitis RJ (1994) Factors affecting the stabilities of chelate, macrocyclic and macrobicyclic complexes in solution. Coord Chem Rev 133:39–65

    Article  Google Scholar 

  18. Howells RD, Crown JDM (1977) Trifluoromethanesulfonic acid and derivatives. Chem Rev 77:69–92

    Article  Google Scholar 

  19. Guerbet M (1899) Action des alcools ethylique, isobutylique, isoamylique sur leurs derives sodes. CR Hebd Seances Acad Sci 128:1002–1004

    Google Scholar 

  20. Guerbet M (1909) Condensation de l’alcool isopropylique avec son dérivé sodé; formation du méthylisobutylcarbinol et du diméthyl-2.4-heptanol-6. CR Hebd Seances Acad Sci 149:129–132

    Google Scholar 

  21. Veibel S, Nielsen JI (1967) On the mechanism of the Guerbet reaction. Tetrahedron 23(4):1723–1733

    Article  Google Scholar 

  22. Dowson GRM et al (2013) Catalytic conversion of ethanol into an advanced biofuel: unprecedented selectivity for n-butanol. Angew Chem Int Ed 52(34):9005–9008

    Article  Google Scholar 

  23. Hamid M, Slatford PA, Williams JMJ (2007) Borrowing hydrogen in the activation of alcohols. Adv Synth Catal 349(10):1555–1575

    Article  Google Scholar 

  24. Obora Y, Ishii Y (2011) Iridium-catalyzed reactions involving transfer hydrogenation, addition, n-heterocyclization, and alkylation using alcohols and diols as key substrates. Synlett 1:30–51

    Article  Google Scholar 

  25. Koda K et al (2009) Guerbet reaction of ethanol to n-butanol catalyzed by iridium complexes. Chem Lett 38(8):838–839

    Article  Google Scholar 

  26. Xu GQ et al (2014) Direct self-condensation of bio-alcohols in the aqueous phase. Green Chem 16(8):3971–3977

    Article  Google Scholar 

  27. An industrial scale production of 1,3-propanediol by the fermentation of glucose using genetically modified organisms has been realized by DuPont Tate & Lyle Bioproducts

    Google Scholar 

  28. Pagliaro M et al (2007) From glycerol to value-added products. Angew Chem Int Ed 46(24):4434–4440

    Article  Google Scholar 

  29. Behr A et al (2008) New chemical products on the basis of glycerol. Chimica Oggi-Chem Today 26(1):32–36

    MathSciNet  Google Scholar 

  30. Zhou CHC et al (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37(3):527–549

    Article  Google Scholar 

  31. ten Dam J, Hanefeld U (2011) Renewable chemicals: dehydroxylation of glycerol and polyols. ChemSusChem 4(8):1017–1034

    Article  Google Scholar 

  32. Zhou CH et al (2013) Recent advances in catalytic conversion of glycerol. Catal Rev-Sci Eng 55(4):369–453

    Article  Google Scholar 

  33. Che T (1987) Production of Propanediols, Celanese Corporation, US Patent 4,642,394

    Google Scholar 

  34. Braca G, Galletti AMR, Sbrana G (1991) Anionic ruthenium iodocarbonyl complexes as selective dehydroxylation catalysts in aqueous solution. J Organomet Chem 417:41–49

    Article  Google Scholar 

  35. Drent E, Jager WW (2000) Hydrogenolysis of glycerol. Shell Oil, US Patent 6,080,898

    Google Scholar 

  36. Brem N et al (2010) Carbonylation of glycerol and other polyols: a high throughput study of feasibility. Top Catal 53(1–2):28–34

    Article  Google Scholar 

  37. Coskun T et al (2013) Carbodeoxygenation of biomass: the carbonylation of glycerol and higher polyols to monocarboxylic acids. Chem A Eur J 19(21):6840–6844

    Article  Google Scholar 

  38. Nakamura Y (1979) Carbonylation of polyhydric alcohols. Noguchi Research Foundation, Japanese Patent 54044608A

    Google Scholar 

  39. Bullock RM (2004) Catalytic ionic hydrogenations. Chem A Eur J 10(10):2366–2374

    Article  Google Scholar 

  40. Xie Z, Schlaf M (2005) Direct transformation of terminal vic-diols to primary alcohols and alkanes through hydrogenation catalyzed by [cis-Ru(6,6′-Cl-2-bipy)(2)(OH2)(2)](CF3SO3)(2) in acidic medium. J Mol Catal A Chem 229(1–2):151–158

    Article  Google Scholar 

  41. Lau C-P, Cheng L (1993) Catalytic hydrogenation reactions by [cis-Ru(6,6-Cl2bpy)2(OH2)2](CF3SO2)2 in biphasic media; (6,6-Cl2bpy = 6,6′-dichloro-2,2′-bipyridine). J Mol Catal 84:39–50

    Article  Google Scholar 

  42. Lau CP, Cheng L (1992) Catalytic hydrogenation reactions by cis-[Ru(6,6′-Cl2bpy)2(OH2)2][CF3SO3]2 (6,6′-Cl2bpy = 6,6′-dichloro-2,2′-bipyridine). Inorg Chim Acta 195:133–134

    Article  Google Scholar 

  43. Taher D et al (2009) Acid-, water- and high-temperature stable ruthenium complexes for the total catalytic deoxygenation of glycerol to propane. Chemistry 15:10132–10143

    Article  Google Scholar 

  44. Kubas G (2001) Metal dihydrogen and σ-bond complexes. Structure, theory and reactivity. In: Fackler JJP (ed) Modern inorganic chemistry. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  45. Grundler PV et al (2006) Kinetic studies on the first dihydrogen aquacomplex, [Ru(H2)(H2O)5]2+: formation under H2 pressure and catalytic H/D isotope exchange in water. Inorg Chim Acta 359(6):1795–1806

    Article  Google Scholar 

  46. Schlaf M et al (2009) Catalytic deoxygenation of 1,2-propanediol to give n-propanol. Adv Synth Catal 351(5):789–800

    Article  Google Scholar 

  47. Schlaf M et al (2001) Metal-catalyzed selective deoxygenation of diols to alcohols. Angew Chem Int Ed 40:3887–3890

    Article  Google Scholar 

  48. Dykeman RR et al (2007) Catalytic deoxygenation of terminal-diols under acidic aqueous conditions by the ruthenium complexes [([eta]6-arene)Ru(X)(N [intersection] N)](OTf)n, X = H2O, H, [eta]6-arene = p-Me-iPr-C6H4, C6Me6, N [intersection] N = bipy, phen, 6,6′-diamino-bipy, 2,9-diamino-phen, (n = 1, 2): influence of the ortho-amine substituents on catalytic activity. J Mol Chem 277:233–251

    Article  Google Scholar 

  49. Thibault ME et al (2011) Cyclopentadienyl and pentamethylcyclopentadienyl ruthenium complexes as catalysts for the total deoxygenation of 1,2-hexanediol and glycerol. Green Chem 13(2):357–366

    Article  MathSciNet  Google Scholar 

  50. See other chapters in this book

    Google Scholar 

  51. Goldberg KI et al (2013) Methods of converting polyols. World Patent WO/2013/130972

    Google Scholar 

  52. Lao DB et al (2013) Partial deoxygenation of glycerol catalyzed by iridium pincer complexes. ACS Catal 3(10):2391–2396

    Article  MathSciNet  Google Scholar 

  53. Arceo E et al (2009) An efficient didehydroxylation method for the biomass-derived polyols glycerol and erythritol. Mechanistic studies of a formic acid-mediated deoxygenation. Chem Commun 23:3357–3359

    Article  Google Scholar 

  54. Manzer LE (2003) Production of tetrahydrofuran from tetrahydroxybutane in the presence of an acid and carbon-supported rhenium catalysts. E.T. DuPont Nemours and Company, World Patent WO 2003042200 A1

    Google Scholar 

  55. Lichtenthaler FW (2000) Carbohydrates as organic raw materials. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  56. Van Zandvoort I et al (2013) Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6(9):1745–1758

    Article  Google Scholar 

  57. Assuming that the hydrolysis of 2-methyl-tetrahydrofuran, which is possible under extreme reaction conditions does not take place. See [16].

    Google Scholar 

  58. Adkins H, Connor R (1931) The catalytic hydrogenation of organic compounds over copper chromite. J Am Chem Soc 53:1091–1095

    Article  Google Scholar 

  59. Schniepp LE, Geller HH (1946) Preparation of dihydropyran, δ-hydroxyvaleraldehyde and 1,5-pentanediol from tetrahydrofurfuryl alcohol. J Am Chem Soc 68:1646–1648

    Article  Google Scholar 

  60. Liu S et al (2014) One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir-ReOx/SiO2 bifunctional catalyst. Green Chem 16(2):617–626

    Article  Google Scholar 

  61. Mizugaki T et al (2014) Direct transformation of furfural to 1,2-pentanediol using a hydrotalcite-supported platinum nanoparticle catalyst. ACS Sus Chem Eng 2(10):2243–2247

    Article  Google Scholar 

  62. Hronec M, Fulajtarová K, Liptaj T (2012) Effect of catalyst and solvent on the furan ring rearrangement to cyclopentanone. Appl Catal Gen 437–438:104–111

    Article  Google Scholar 

  63. Yang Y et al (2013) Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts. Green Chem 15(7):1932–1940

    Article  Google Scholar 

  64. Guo J et al (2014) Selective conversion of furfural to cyclopentanone with CuZnAl catalysts. ACS Sus Chem Eng 2(10):2259–2266

    Article  Google Scholar 

  65. Li X-L et al (2015) Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu-Co catalysts. Green Chem 15:1038–1046

    Article  Google Scholar 

  66. Gowda AS, Parkin S, Ladipo FT (2012) Hydrogenation and hydrogenolysis of furfural and furfuryl alcohol catalyzed by ruthenium(II) bis(diimine) complexes. Appl Organomet Chem 26(2):86–93

    Article  Google Scholar 

  67. Bozell JJ et al (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28(3–4):227–239

    Article  Google Scholar 

  68. Lange J-P et al (2010) Valeric biofuels: a platform of cellulosic transportation fuels. Angew Chem Int Ed 49:4479–4483

    Article  Google Scholar 

  69. Ayoub PM, Lange J-P (2008) Process for converting levulinic into pentanoic acid. Shell, World Patent WO 2008/142127

    Google Scholar 

  70. Horváth I et al (2008) γ-Valerolactone – a sustainable liquid for energy and carbon-based chemicals. Green Chem 10:238–242

    Article  Google Scholar 

  71. Horvath IT (2008) Solvents from nature. Green Chem 10(10):1024–1028

    Article  Google Scholar 

  72. Fabos V et al (2009) Bio-oxygenates and the peroxide number: a safety issue alert. Energy Environ Sci 2(7):767–769

    Article  Google Scholar 

  73. Fegyverneki D et al (2010) Gamma-valerolactone-based solvents. Tetrahedron 66(5):1078–1081

    Article  Google Scholar 

  74. Delhomme C et al (2013) Catalytic hydrogenation of levulinic acid in aqueous phase. J Organomet Chem 724:297–299

    Article  Google Scholar 

  75. Li W et al (2012) Highly efficient hydrogenation of biomass-derived levulinic acid to [gamma]-valerolactone catalyzed by iridium pincer complexes. Green Chem 14(9):2388–2390

    Article  Google Scholar 

  76. Blum Y et al (1985) Cyclopentadienone(ruthenium carbonyl complexes – a new class of homogeneous hydrogenation catalysts). Organometallics 4:1459–1461

    Article  Google Scholar 

  77. Shvo Y, Czarkie D, Rahamin Y (1986) A new group of ruthenium complexes: structure and catalysis. J Am Chem Soc 108:7400–7402

    Article  Google Scholar 

  78. Fabos V, Mika LT, Horvath IT (2014) Selective conversion of levulinic and formic acids to gamma-valerolactone with the Shvo catalyst. Organometallics 33(1):181–187

    Article  Google Scholar 

  79. Mehdi H et al (2008) Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: from sucrose to levulinic acid, g-valerolactone, 1,4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes. Topics Catal 48:49–54

    Article  Google Scholar 

  80. The same complex with triflate as the counterion was also employed by the author as for the hydrodeoxygenation of terminal diols to primary alcohols under hydrogen atmosphere in acidic aqueous sulfolane solution. See: Dykeman RR, Luska KL, Thibault ME, Jones MD, Schlaf M, Khanfar M, Taylor N, Britten J, Harrington JF, Mol LJ. Catal A Chem 277:233–251.

    Google Scholar 

  81. Geilen FMA et al (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem Int Ed 49(32):5510–5514

    Article  Google Scholar 

  82. Geilen FMA et al (2011) Selective homogeneous hydrogenation of biogenic carboxylic acids with [Ru(TriPhos)H]+: a mechanistic study. J Am Chem Soc 133(36):14349–14358

    Article  Google Scholar 

  83. Montgomery R, Wiggins LF (1946) Anhydrides of polyhydric alcohols. IV. Constitution of dianhydrosorbitol. J Chem Soc pp 390–393

    Google Scholar 

  84. Pasini T et al (2014) Substrate and product role in the Shvo’s catalyzed selective hydrogenation of the platform bio-based chemical 5-hydroxymethylfurfural. Dalton Trans 43(26):10224–10234

    Article  Google Scholar 

  85. Yang W, Grochowski MR, Sen A (2012) Selective reduction of biomass by hydriodic acid and its in situ regeneration from iodine by metal/hydrogen. ChemSusChem 5:1218–1222

    Article  Google Scholar 

  86. Grochowski MR, Yang WR, Sen A (2012) Mechanistic study of a one-step catalytic conversion of fructose to 2,5-dimethyltetrahydrofuran. Chem Eur J 18(39):12363–12371

    Article  Google Scholar 

  87. Yang W, Sen A (2011) Direct catalytic synthesis of 5-methylfurfural from biomass-derived carbohydrates. ChemSusChem 4(3):349–352

    Article  MATH  Google Scholar 

  88. Yang WR, Sen A (2010) One-step catalytic transformation of carbohydrates and cellulosic biomass to 2,5-dimethyltetrahydrofuran for liquid fuels. ChemSusChem 3(5):597–603

    Article  Google Scholar 

  89. Sullivan RJ et al (2014) Hydrodeoxygenation of 2,5-hexanedione and 2,5-dimethylfuran by water-, air-, and acid-stable homogeneous ruthenium and iridium catalysts. ACS Catal 4:4116–4128

    Article  Google Scholar 

  90. Adduci LL et al (2014) Metal-free deoxygenation of carbohydrates. Angew Chem Int Ed 53(6):1646–1649

    Article  Google Scholar 

  91. McLaughlin MP et al (2013) Iridium-catalyzed hydrosilylative reduction of glucose to hexane(s). J Am Chem Soc 135(4):1225–1227

    Article  Google Scholar 

  92. Yang J, White PS, Brookhart M (2008) Scope and mechanism of the iridium-catalyzed cleavage of alkyl ethers with triethylsilane. J Am Chem Soc 130(51):17509–17518

    Article  Google Scholar 

  93. Frihed TG, Bols M, Pedersen CM (2001) Diethylsilane. In: Encyclopedia of reagents for organic synthesis. Wiley

    Google Scholar 

  94. Rösch L, John P, Reitmeier R (2000) Silicon compounds, organic. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  95. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  Google Scholar 

  96. Mortensen PM et al (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407(1–2):1–19

    Article  Google Scholar 

  97. Bulushev DA, Ross JRH (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal Today 171(1):1–13

    Article  Google Scholar 

  98. Hallman PS, Stephenson TA, Wilkinson G (2007) Tetrakis(triphenylphosphine)dichlororuthenium(II) and Tris(triphenylphosphine)dichlororuthenium(II). In: Inorganic syntheses. Wiley, pp 237–240

    Google Scholar 

  99. Hallman PS, McGarvey BR, Wilkinson G (1968) The preparation and reactions of hydridochlorotris(triphenylphosphine)ruthenium(II) including catalytitic hydrogenation of 1 alkenes. J Chem Soc A 3143–3150

    Google Scholar 

  100. Mahfud FH, Ghijsen F, Heeres HJ (2007) Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts. J Mol Catal A Chem 264(1–2):227–236

    Article  Google Scholar 

  101. Busetto L et al (2011) Application of the Shvo catalyst in homogeneous hydrogenation of bio-oil obtained from pyrolysis of white poplar: new mild upgrading conditions. Fuel 90(3):1197–1207

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Schlaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Schlaf, M. (2016). Homogeneous Catalysts for the Hydrodeoxygenation of Biomass-Derived Carbohydrate Feedstocks. In: Schlaf, M., Zhang, Z. (eds) Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-769-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-769-7_2

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-768-0

  • Online ISBN: 978-981-287-769-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics