Skip to main content

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Deoxygenation of vicinal diols and polyols, common moieties in biomass-derived molecules, represents an important chemical pathway for making chemicals from renewable biomass resources. Catalytic deoxydehydration (DODH) is a promising deoxygenation reaction that removes two adjacent hydroxyl (−OH) groups from vicinal diols in one step to generate alkenes. Since the first catalytic DODH with Cp*Re(O)3 report by Cook and Andrews in 1996, a number of metal complexes based on rhenium, ruthenium, vanadium, and molybdenum have been investigated. High-valent oxorhenium complexes are among the most efficient catalysts for DODH reactions and have been studied using various reductants including organic phosphines, molecular hydrogen (H2), sulfite, and alcohols. These complexes exhibit intriguing oxophilic performance, which facilitates selective C-O bond cleavage of polyols. A flurry of investigations have appeared in the literature over the past few years on the scope and mechanism of the DODH reaction in the context of biomass conversion and sustainable chemistry. In this chapter, we briefly review the development of DODH reactions with a focus on homogenous Re-catalyzed transformations. Several heterogeneous and other metal catalysts are included for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098. doi:10.1021/cr068360d

    Article  Google Scholar 

  2. Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A (2011) Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 40(11):5266–5281. doi:10.1039/C1CS15131B

    Article  Google Scholar 

  3. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513. doi:10.1039/C004654J

    Article  Google Scholar 

  4. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558. doi:10.1039/C1CS15147A

    Article  Google Scholar 

  5. Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46(38):7184–7201. doi:10.1002/anie.200604504

    Article  Google Scholar 

  6. Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46(38):7164–7183. doi:10.1002/anie.200604274

    Article  Google Scholar 

  7. Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manage 48(1):87–92. doi:http://dx.doi.org/10.1016/j.enconman.2006.05.010

    Google Scholar 

  8. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20(3):848–889. doi:10.1021/ef0502397

    Article  Google Scholar 

  9. Mettler MS, Vlachos DG, Dauenhauer PJ (2012) Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ Sci 5(7):7797–7809. doi:10.1039/C2EE21679E

    Article  Google Scholar 

  10. Jin F, Enomoto H (2011) Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions. Energy Environ Sci 4(2):382–397. doi:10.1039/C004268D

    Article  Google Scholar 

  11. Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal Gen 385(1–2):1–13. doi:http://dx.doi.org/10.1016/j.apcata.2010.06.049

    Google Scholar 

  12. Rinaldi R, Schuth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2(6):610–626. doi:10.1039/B902668A

    Article  Google Scholar 

  13. Akien GR, Qi L, Horvath IT (2012) Molecular mapping of the acid catalysed dehydration of fructose. Chem Commun 48(47):5850–5852. doi:10.1039/C2CC31689G

    Article  Google Scholar 

  14. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502. doi:10.1021/cr050989d

    Article  Google Scholar 

  15. Du X-L, Bi Q-Y, Liu Y-M, Cao Y, He H-Y, Fan K-N (2012) Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived [gamma]-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran. Green Chem 14(4):935–939. doi:10.1039/C2GC16599F

    Article  Google Scholar 

  16. Dutta S (2012) Deoxygenation of biomass-derived feedstocks: hurdles and opportunities. ChemSusChem 5(11):2125–2127. doi:10.1002/cssc.201200596

    Article  Google Scholar 

  17. Metzger JO (2013) Catalytic deoxygenation of carbohydrate renewable resources. ChemCatChem 5(3):680–682. doi:10.1002/cctc.201200796

    Article  Google Scholar 

  18. Cook GK, Andrews MA (1996) Toward nonoxidative routes to oxygenated organics: stereospecific deoxydehydration of diols and polyols to alkenes and allylic alcohols catalyzed by the metal oxo complex (C5Me5)ReO3. J Am Chem Soc 118(39):9448–9449. doi:10.1021/ja9620604

    Article  Google Scholar 

  19. Gable KP, Phan TN (1994) Extrusion of alkenes from rhenium(V) diolates: energetics and mechanism. J Am Chem Soc 116(3):833–839. doi:10.1021/ja00082a002

    Article  Google Scholar 

  20. Gable KP (1994) Condensation of vicinal diols with the oxo complex {Cp*Re(O)}2(.mu.-O)2 giving the corresponding diolate complexes. Organometallics 13(6):2486–2488. doi:10.1021/om00018a048

    Article  Google Scholar 

  21. Gable KP, Juliette JJJ (1996) Hammett studies on alkene extrusion from rhenium(V) diolates and an MO description of metal alkoxide−alkyl metal oxo interconversion. J Am Chem Soc 118(11):2625–2633. doi:10.1021/ja952537w

    Article  Google Scholar 

  22. Gable KP, Zhuravlev FA (2002) Kinetic Isotope effects in cycloreversion of rhenium (V) diolates. J Am Chem Soc 124(15):3970–3979. doi:10.1021/ja017736w

    Article  Google Scholar 

  23. Gable KP, AbuBaker A, Zientara K, Wainwright AM (1998) Cycloreversion of rhenium(V) diolates containing the hydridotris(3,5-dimethylpyrazolyl)borate ancillary ligand. Organometallics 18(2):173–179. doi:10.1021/om980807o

    Article  Google Scholar 

  24. Kevin PG, Brian R (2006) Improved catalytic deoxygenation of vicinal diols and application to alditols. In: Feedstocks for the future, vol 921, ACS symposium series. American Chemical Society, Washington, DC, pp 143–155. doi:10.1021/bk-2006-0921.ch011

    Chapter  Google Scholar 

  25. Gable KP, Juliette JJJ (1995) Extrusion of alkenes from rhenium(V) diolates: the effect of substitution and conformation. J Am Chem Soc 117(3):955–962. doi:10.1021/ja00108a012

    Article  Google Scholar 

  26. Herrmann WA, Marz D, Herdtweck E, Schäfer A, Wagner W, Kneuper H-J (1987) Glycolate and thioglycolate complexes of rhenium and their oxidative elimination of ethylene and of glycol. Angew Chem Int Ed Engl 26(5):462–464. doi:10.1002/anie.198704621

    Article  Google Scholar 

  27. Herrmann WA, Marz DW, Herdtweck E (1990) Mehrfachbindungen zwischen hauptgruppenelementen und übergangsmetallen: LXXVIII. Über oxo- und methylimido-komplexe des rheniums mit sauerstoff-, schwefel- und stickstoffchelaten: Synthese, spaltungsreaktionen und strukturchemie. J Organomet Chem 394(1–3):285–303. doi:http://dx.doi.org/10.1016/0022-328X(90)87239-A

    Google Scholar 

  28. Ziegler JE, Zdilla MJ, Evans AJ, Abu-Omar MM (2009) H2-driven deoxygenation of epoxides and diols to alkenes catalyzed by methyltrioxorhenium. Inorg Chem 48(21):9998–10000. doi:10.1021/ic901792b

    Article  Google Scholar 

  29. Vkuturi S, Chapman G, Ahmad I, Nicholas KM (2010) Rhenium-catalyzed deoxydehydration of glycols by sulfite. Inorg Chem 49(11):4744–4746. doi:10.1021/ic100467p

    Article  Google Scholar 

  30. Ahmad I, Chapman G, Nicholas KM (2011) Sulfite-driven, oxorhenium-catalyzed deoxydehydration of glycols. Organometallics 30(10):2810–2818. doi:10.1021/om2001662

    Article  Google Scholar 

  31. Arceo E, Ellman JA, Bergman RG (2010) Rhenium-catalyzed didehydroxylation of vicinal diols to alkenes using a simple alcohol as a reducing agent. J Am Chem Soc 132(33):11408–11409. doi:10.1021/ja103436v

    Article  Google Scholar 

  32. Yi J, Liu S, Abu-Omar MM (2012) Rhenium-catalyzed transfer hydrogenation and deoxygenation of biomass-derived polyols to small and useful organics. ChemSusChem 5(8):1401–1404. doi:10.1002/cssc.201200138

    Article  Google Scholar 

  33. Liu S, Senocak A, Smeltz JL, Yang L, Wegenhart B, Yi J, Kenttämaa HI, Ison EA, Abu-Omar MM (2013) Mechanism of MTO-catalyzed deoxydehydration of diols to alkenes using sacrificial alcohols. Organometallics 32(11):3210–3219. doi:10.1021/om400127z

    Article  Google Scholar 

  34. Bi S, Wang J, Liu L, Li P, Lin Z (2012) Mechanism 1: mechanism of the MeReO3-catalyzed deoxygenation of epoxides. Organometallics 31(17):6139–6147. doi:10.1021/om300485w

    Article  Google Scholar 

  35. Qu S, Dang Y, Wen M, Wang Z-X (2013) Mechanism 2: mechanism of the methyltrioxorhenium-catalyzed deoxydehydration of polyols: a new pathway revealed. Chem Eur J 19(12):3827–3832. doi:10.1002/chem.201204001

    Article  Google Scholar 

  36. Shiramizu M, Toste FD (2012) Deoxygenation of biomass-derived feedstocks: oxorhenium-catalyzed deoxydehydration of sugars and sugar alcohols. Angew Chem Int Ed 51(32):8082–8086. doi:10.1002/anie.201203877

    Article  Google Scholar 

  37. Shiramizu M, Toste FD (2013) Expanding the scope of biomass-derived chemicals through tandem reactions based on oxorhenium-catalyzed deoxydehydration. Angew Chem Int Ed 52(49):12905–12909. doi:10.1002/anie.201307564

    Article  Google Scholar 

  38. Denning AL, Dang H, Liu Z, Nicholas KM, Jentoft FC (2013) Deoxydehydration of glycols catalyzed by carbon-supported perrhenate. ChemCatChem 5(12):3567–3570. doi:10.1002/cctc.201300545

    Article  Google Scholar 

  39. Di Mondo D, Ashok D, Waldie F, Schrier N, Morrison M, Schlaf M (2011) Stainless steel as a catalyst for the total deoxygenation of glycerol and levulinic acid in aqueous acidic medium. ACS Catal 1(4):355–364. doi:10.1021/cs200053h

    Article  Google Scholar 

  40. Liu Y, Tuysuz H, Jia C-J, Schwickardi M, Rinaldi R, Lu A-H, Schmidt W, Schuth F (2010) Iron oxide: from glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer. Chem Commun 46(8):1238–1240. doi:10.1039/B921648K

    Article  Google Scholar 

  41. Atia H, Armbruster U, Martin A (2008) Poly acid: dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. J Catal 258(1):71–82. doi:http://dx.doi.org/10.1016/j.jcat.2008.05.027

    Google Scholar 

  42. Amada Y, Watanabe H, Hirai Y, Kajikawa Y, Nakagawa Y, Tomishige K (2012) Production of biobutanediols by the hydrogenolysis of erythritol. ChemSusChem 5(10):1991–1999. doi:10.1002/cssc.201200121

    Article  Google Scholar 

  43. Michael McClain J, Nicholas KM (2014) Elemental reductants for the deoxydehydration of glycols. ACS Catal 4(7):2109–2112. doi:10.1021/cs500461v

    Article  Google Scholar 

  44. Chapman G, Nicholas KM (2013) Vanadium-catalyzed deoxydehydration of glycols. Chem Commun 49(74):8199–8201. doi:10.1039/C3CC44656E

    Article  Google Scholar 

  45. Hills L, Moyano R, Montilla F, Pastor A, Galindo A, Álvarez E, Marchetti F, Pettinari C (2013) Dioxomolybdenum(VI) complexes with acylpyrazolonate ligands: synthesis, structures, and catalytic properties. Eur J Inorg Chem 2013(19):3352–3361. doi:10.1002/ejic.201300098

    Article  Google Scholar 

  46. Dethlefsen JR, Lupp D, Oh B-C, Fristrup P (2014) Molybdenum-catalyzed deoxydehydration of vicinal diols. ChemSusChem 7(2):425–428. doi:10.1002/cssc.201300945

    Article  Google Scholar 

  47. Stanowski S, Nicholas KM, Srivastava RS (2012) [Cp*Ru(CO)2]2-catalyzed hydrodeoxygenation and hydrocracking of diols and epoxides. Organometallics 31(2):515–518. doi:10.1021/om200447z

    Article  Google Scholar 

  48. Murru S, Nicholas KM, Srivastava RS (2012) Ruthenium (II) sulfoxides-catalyzed hydrogenolysis of glycols and epoxides. J Mol Catal Chem 363–364(0):460–464. doi:http://dx.doi.org/10.1016/j.molcata.2012.07.025

    Google Scholar 

  49. Thibault ME, DiMondo DV, Jennings M, Abdelnur PV, Eberlin MN, Schlaf M (2011) Cyclopentadienyl and pentamethylcyclopentadienyl ruthenium complexes as catalysts for the total deoxygenation of 1,2-hexanediol and glycerol. Green Chem 13(2):357–366. doi:10.1039/C0GC00255K

    Article  Google Scholar 

  50. Ghosh P, Fagan PJ, Marshall WJ, Hauptman E, Bullock RM (2009) Synthesis of ruthenium carbonyl complexes with phosphine or substituted Cp ligands, and their activity in the catalytic deoxygenation of 1,2-propanediol. Inorg Chem 48(14):6490–6500. doi:10.1021/ic900413y

    Article  Google Scholar 

Download references

Acknowledgment

Our research in deoxygenation of biomass-derived molecules has been support by the Department of Energy (DOE), Basic Energy Sciences (BES) grant no. DE-FG-02-06ER15794.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi M. Abu-Omar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Liu, S., Yi, J., Abu-Omar, M.M. (2016). Deoxydehydration (DODH) of Biomass-Derived Molecules. In: Schlaf, M., Zhang, Z. (eds) Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-769-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-769-7_1

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-768-0

  • Online ISBN: 978-981-287-769-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics