Skip to main content

Field-Based Simulations of Nanostructured Polyelectrolyte Gels

  • Chapter
  • First Online:
Materials for Energy Infrastructure

Abstract

Nanostructured, responsive hydrogels composed of oppositely charged triblock copolymers with charged end-blocks and neutral, hydrophilic mid-blocks in aqueous solution were recently discovered. Due to electrostatic interactions, the end-blocks microphase separate and form physical cross-links that are bridged by the mid-blocks. Since these hydrogels are hydrophilic and have the ability to respond to a variety of stimuli including temperature and salt concentration, they are promising for a variety of biomedical applications including, but not limited to, drug delivery and tissue scaffolds. For such applications, there is a need to understand how to control the structure of the hydrogel. To this end, we use a new, efficient model along with self-consistent field theory to determine the structure as a function of polymer concentration and end-block fraction. After identifying numerous phases including a sphere phase, a hexagonally packed cylinder phase, a lamellar phase, and regions of phase coexistence, we determine how the polymer functionality can be tuned to manipulate the resulting phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Official contribution of the U.S. National Institute of Standards and Technology—Not subject to copyright in the United States.

References

  1. Stuparu MC, Khan A, Hawker CJ (2012) Polym Chem 3:3033–3044

    Article  Google Scholar 

  2. Tsitsilianis C (2010) Soft Matter 6:2372–2388

    Article  Google Scholar 

  3. Hubbell JA (1995) Nat Biotech 13:565–576

    Article  Google Scholar 

  4. Khetan S, Burdick JA (2011) Soft Matter 7:830–838

    Article  Google Scholar 

  5. Kretlow JD, Klouda L, Mikos AG (2007) Adv Drug Deliver Rev 59:263–273

    Article  Google Scholar 

  6. Bajpai A, Shukla SK, Bhanu S, Kankane S (2008) Prog Polym Sci 33:1088–1118

    Article  Google Scholar 

  7. Gupta P, Vermani K, Garg S (2002) Drug Discov Today 7:569–579

    Article  Google Scholar 

  8. Hoare TR, Kohane DS (2008) Polymer 49:1993–2007

    Article  Google Scholar 

  9. Peppas NA (1997) Curr Opin Colloid In 2:531–537

    Article  Google Scholar 

  10. van der Burgh S, Fokkink R, de Keizer A, Cohen Stuart MA (2004) Colloid Surf A 242:167–174

    Google Scholar 

  11. Brzozowska A, Hofs B, de Keizer A, Fokkink R, Cohen Stuart MA, Norde W (2009) Colloid Surf A 347:146–155

    Google Scholar 

  12. Peppas NA, Sahlin JJ (1996) Biomaterials 17:1553–1561

    Article  Google Scholar 

  13. Guvendiren M, Lu HD, Burdick JA (2012) Soft Matter 8:260–272

    Article  Google Scholar 

  14. Bungenberg de Jong HG, Kruyt HR (1929) Proc Koninkl Nederland Akad Wetenschap 32:849–856

    Google Scholar 

  15. Lemmers M, Sprakel J, Voets IK, van der Gucht J, Cohen Stuart MA (2010) Angew Chem 122:720–723

    Article  Google Scholar 

  16. Lemmers M, Voets IK, Cohen MA (2011) Stuart and J. van der Gucht. Soft Matter 7:1378–1389

    Article  Google Scholar 

  17. Lemmers M, Spruijt E, Beun L, Fokkink R, Leermakers F, Portale G, Cohen Stuart MA, van der Gucht J (2012) Soft Matter 8:104–117

    Article  Google Scholar 

  18. Hunt JN, Feldman KE, Lynd NE, Deek J, Campos LM, Spruell JM, Hernandez BM, Kramer EJ, Hawker CJ (2011) Adv Mater 23:2327–2331

    Article  Google Scholar 

  19. Krogstad DV, Lynd NA, Choi S-H, Spruell JM, Hawker CJ, Kramer EJ, Tirrell MV (2013) Macromolecules 46:1512–1518

    Article  Google Scholar 

  20. Ou Z, Muthukumar M (2006) J Chem Phys 124:154902

    Article  Google Scholar 

  21. Trejo-Ramos MA, Tristán F, Menchaca J-L, Pérez E, Chávez-Páez M (2007) J Chem Phys 126:014901

    Article  Google Scholar 

  22. Hayashi Y, Ullner M, Linse P (2002) J Chem Phys 116:6836–6845

    Article  Google Scholar 

  23. Hayashi Y, Ullner M, Linse P (2003) J Phys Chem B 107:8198–8207

    Article  Google Scholar 

  24. Hayashi Y, Ullner M, Linse P (2004) J Phys Chem B 108:15266–15277

    Article  Google Scholar 

  25. Narambuena C, Leiva E, Chvez-Pez M, Prez E (2010) Polymer 51:3293–3302

    Article  Google Scholar 

  26. Dias RS, Linse P, Pais AACC (2011) J Comput Chem 32:2697–2707

    Article  Google Scholar 

  27. Lazutin AA, Semenov AN, Vasilevskaya VV (2012) Macromol Theory Simul 21:328–339

    Article  Google Scholar 

  28. Winkler RG, Steinhauser MO, Reineker P (2002) Phys Rev E 66:21802

    Article  Google Scholar 

  29. Popov YO, Lee J, Fredrickson GH (2007) J Poly Sci B 45:3223–3230

    Article  Google Scholar 

  30. Lee J, Popov YO, Fredrickson GH (2008) J. Chem. Phys. 128:224908

    Article  Google Scholar 

  31. Riggleman RA, Kumar R, Fredrickson GH (2012) J. Chem. Phys. 136:024903

    Article  Google Scholar 

  32. Audus DJ, Gopez JD, Krogstad DV, Lynd NA, Kramer EJ, Hawker CJ, Fredrickson GH (2015) Soft Matter 11:1214–1225

    Article  Google Scholar 

  33. Audus D (2013) Field-Based simulations of nanostructured polyelectrolyte gels. Ph.D. disseration, University of California, Santa Barbara

    Google Scholar 

  34. Doi M, Edwards S (1986) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  35. Edwards SF, Phys P (1965) Soc. 85:613

    Google Scholar 

  36. Borue VY, Erukhimovich IY (1988) Macromolecules 21:3240

    Article  Google Scholar 

  37. Borue VY, Erukhimovich IY (1990) Macromolecules 23:3625

    Article  Google Scholar 

  38. Ermoshkin AV, Olvera de la Cruz M (2003) Macromolecules 36:7824–7832

    Article  Google Scholar 

  39. Kudlay A, Olvera de la Cruz M (2004) J. Chem. Phys. 120:404

    Article  Google Scholar 

  40. Kudlay A, Ermoshkin AV, Olvera de la Cruz M (2004) Macromolecules 37:9231

    Article  Google Scholar 

  41. Castelnovo M, Joanny J-F (2001) Euro. Phys. J. E 6:377–386

    Article  Google Scholar 

  42. Castelnovo M, Joanny J-F (2002) Macromolecules 35:4531–4538

    Article  Google Scholar 

  43. Fredrickson GH (2006) The equilibrium theory of inhomogeneous polymers. Oxford University Press, New York

    Google Scholar 

  44. Ranjan A, Qin J, Morse DC (2008) Macromolecules 41:942–954

    Article  Google Scholar 

  45. Barrat J-L, Fredrickson GH, Sides SW (2005) J Phys Chem B 109:6694–6700

    Article  Google Scholar 

  46. Panagiotopoulos AZ (1987) Mol Phys 61:813–826

    Article  Google Scholar 

  47. Panagiotopoulos A, Quirke N, Stapleton M, Tildesley D (1988) Mol Phys 63:527–545

    Article  Google Scholar 

  48. Mester Z, Lynd NA, Fredrickson GH (2013) Soft Matter 9:11288–11294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debra J. Audus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Audus, D.J., Fredrickson, G.H. (2016). Field-Based Simulations of Nanostructured Polyelectrolyte Gels. In: Udomkichdecha, W., Mononukul, A., Böllinghaus, T., Lexow, J. (eds) Materials for Energy Infrastructure. Springer, Singapore. https://doi.org/10.1007/978-981-287-724-6_1

Download citation

Publish with us

Policies and ethics