Advances in the Conversion of Short-Chain Carbohydrates: A Mechanistic Insight

  • Rik De ClercqEmail author
  • Michiel Dusselier
  • Bert F. SelsEmail author
Part of the Green Chemistry and Sustainable Technology book series (GCST)


This chapter discusses recent insights in the conversion of short carbohydrates, viz., sugars containing four or less carbon atoms. Rather than summarizing product yields from such sugars and reported catalysts for the conversions, the focus lies on understanding the underlying mechanisms. These short carbohydrates can lead to a broad spectrum of products, ranging from platform chemicals such as lactic acid and ethylene glycol to high-value chemicals such as α-hydroxy-γ-butyrolactone and even fuels. Different synthesis strategies of these short carbohydrates include (1) a top-down approach from mono- or polysaccharides and (2) a selective bottom-up synthesis route from formaldehyde. Lewis acids play a major role in carbohydrate chemistry, and among these, Sn-based catalysts often show the highest activity. Whether dioses, trioses, or tetroses are used as substrate, Sn is able to convert them efficiently into α-hydroxy acids or esters, which are useful building blocks for renewable polyesters. Other reaction types such as isomerization, hydrogenation, and cross couplings are discussed briefly as well. Glycerol and glyoxal are no sugars, but their chemistry shows great resemblance to that of carbohydrates. Therefore, these compounds are also briefly accounted for in this chapter.


Catalysis Carbohydrates Lewis acids α-Hydroxy acids Polymer building blocks Formaldehyde 



R.D.C. acknowledges the agency for Innovation by Science and Technology in Flanders (IWT) and the Industrial Research Fund (IOF) (grant ZKC8139) for funding.


  1. 1.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489CrossRefGoogle Scholar
  2. 2.
    Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189CrossRefGoogle Scholar
  3. 3.
    Geboers JA, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs PA, Sels BF (2011) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Technol 1:714–726CrossRefGoogle Scholar
  4. 4.
    Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed Engl 50:10502–10509CrossRefGoogle Scholar
  5. 5.
    Lipinsky ES (1981) Chemicals from biomass: petrochemical substitution options. Science 212:1465–1471CrossRefGoogle Scholar
  6. 6.
    Lichtenthaler FW, Peters S (2004) Carbohydrates as green raw materials for the chemical industry. C R Chim 7:65–90CrossRefGoogle Scholar
  7. 7.
    Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–193Google Scholar
  8. 8.
    Dusselier M, Mascal M, Sels B (2014) Top chemical opportunities from carbohydrate biomass: a chemist’s view of the biorefinery. In: Nicholas KM (ed) Selective catalysis for renewable feedstocks and chemicals. Springer International Publishing, Cham, Switzerland, pp 1–40Google Scholar
  9. 9.
    Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci 6:1415–1442CrossRefGoogle Scholar
  10. 10.
    Dusselier M, Sels BF (2014) Selective catalysis for cellulose conversion to lactic acid and other α-hydroxy acids. In: Nicholas KM (ed) Selective catalysis for renewable feedstocks and chemicals. Springer International Publishing, Cham, Switzerland, pp 85–125Google Scholar
  11. 11.
    Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs PA, Sels BF (2011) Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energy Environ Sci 4:3601–3610CrossRefGoogle Scholar
  12. 12.
    Mäki-Arvela P, Simakova IL, Salmi T, Murzin DY (2014) Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chem Rev 114:1909–1971CrossRefGoogle Scholar
  13. 13.
    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502CrossRefGoogle Scholar
  14. 14.
    Zhang Q, Jérôme F (2013) Mechanocatalytic deconstruction of cellulose: an emerging entry into biorefinery. ChemSusChem 6:2042–2044CrossRefGoogle Scholar
  15. 15.
    Carrasquillo-Flores R, Käldström M, Schüth F, Dumesic JA, Rinaldi R (2013) Mechanocatalytic depolymerization of dry (ligno)cellulose as an entry process for high-yield production of furfurals. ACS Catal 3:993–997CrossRefGoogle Scholar
  16. 16.
    Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5:1322CrossRefGoogle Scholar
  17. 17.
    Gliozzi G, Innorta A, Mancini A, Bortolo R, Perego C, Ricci M, Cavani F (2014) Zr/P/O catalyst for the direct acid chemo-hydrolysis of non-pretreated microcrystalline cellulose and softwood sawdust. Appl Catal B Environ 145:24–33CrossRefGoogle Scholar
  18. 18.
    Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16:516–547CrossRefGoogle Scholar
  19. 19.
    Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed 51:2513CrossRefGoogle Scholar
  20. 20.
    Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15:1740–1763CrossRefGoogle Scholar
  21. 21.
    Yabushita M, Kobayashi H, Fukuoka A (2014) Catalytic transformation of cellulose into platform chemicals. Appl Catal B Environ 145:1–9CrossRefGoogle Scholar
  22. 22.
    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558CrossRefGoogle Scholar
  23. 23.
    Wang T, Nolte MW, Shanks BH (2014) Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16:548–572CrossRefGoogle Scholar
  24. 24.
    Zhang J, Liu X, Sun M, Ma X, Han Y (2012) Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal 2:1698–1702CrossRefGoogle Scholar
  25. 25.
    Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5:7559–7574CrossRefGoogle Scholar
  26. 26.
    Corma A, de la Torre O, Renz M (2012) Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables. Energy Environ Sci 5:6328–6344CrossRefGoogle Scholar
  27. 27.
    Corma A, de la Torre O, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int Ed 50:2375–2378CrossRefGoogle Scholar
  28. 28.
    Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201CrossRefGoogle Scholar
  29. 29.
    Han J, Sen SM, Alonso DM, Dumesic JA, Maravelias CT (2014) A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels. Green Chem 16:653–661CrossRefGoogle Scholar
  30. 30.
    Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4:83–99CrossRefGoogle Scholar
  31. 31.
    Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gärtner CA, Dumesic JA (2008) Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322:417–421CrossRefGoogle Scholar
  32. 32.
    Huber GW, Chheda J, Barett C, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308(80):1446–1450CrossRefGoogle Scholar
  33. 33.
    Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 47:7924–7926CrossRefGoogle Scholar
  34. 34.
    Chen K, Tamura M, Yuan Z, Nakagawa Y, Tomishige K (2013) One-pot conversion of sugar and sugar polyols to n-alkanes without C–C dissociation over the Ir-ReOx/SiO2 catalyst combined with H-ZSM-5. ChemSusChem 6:613–621CrossRefGoogle Scholar
  35. 35.
    Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985CrossRefGoogle Scholar
  36. 36.
    Liu S, Tamura M, Nakagawa Y, Tomishige K (2014) One-pot conversion of cellulose into n-hexane over the Ir-ReOx/SiO2 catalyst combined with HZSM-5. ACS Sustain Chem Eng 2:1819–1827CrossRefGoogle Scholar
  37. 37.
    Yamaguchi S, Motokura K, Sakamoto Y, Miyaji A, Baba T (2014) Tin-catalyzed conversion of biomass-derived triose sugar and formaldehyde to α-hydroxy-γ-butyrolactone. Chem Commun 50:4600–4602CrossRefGoogle Scholar
  38. 38.
    Pereira CSM, Silva VMTM, Rodrigues AE (2011) Ethyl lactate as a solvent: properties, applications and production processes – a review. Green Chem 13:2658–2671CrossRefGoogle Scholar
  39. 39.
    Dusselier M, Wouwe V, De Clippel F, Dijkmans J, Gammon W, Sels BF (2013) Mechanistic insight into the conversion of tetrose sugars to novel alpha-hydroxy acid platform molecules. ChemCatChem 5:569–575CrossRefGoogle Scholar
  40. 40.
    Dusselier M, Van Wouwe P, De Smet S, De Clercq R, Verbelen L, Van Puyvelde P, Du Prez FE, Sels BF (2013) Toward functional polyester building blocks from renewable glycolaldehyde with Sn cascade catalysis. ACS Catal 3:1786–1800CrossRefGoogle Scholar
  41. 41.
    Sasaki M, Goto K, Tajima K, Adschiri T, Arai K (2002) Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water. Green Chem 4:285–287CrossRefGoogle Scholar
  42. 42.
    Matsumoto T, Inoue S (1983) Selective formation of triose from formaldehyde catalysed by ethylbenzothiazolium bromide. J Chem Soc Chem Commun 4:171–172CrossRefGoogle Scholar
  43. 43.
    Matsumoto T, Yamamoto H, Inoue S (1984) Selective formation of triose from formaldehyde catalyzed by thiazolium salt. J Am Chem Soc 106:4829–4832CrossRefGoogle Scholar
  44. 44.
    Dolan GA (2010) Methanol production and utilization. In: Vertès AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to Biofuels. Blackwell Publishing Ltd., Oxford, UK, pp 435–455Google Scholar
  45. 45.
    Deng J, Pan T, Xu Q, Chen M-Y, Zhang Y, Guo Q-X, Fu Y (2013) Linked strategy for the production of fuels via formose reaction. Sci Rep 3:1244Google Scholar
  46. 46.
    Diebold JP, Czernik S, Diebold J, Meier D, Oasmaa A, Peacocke C, Piskorz J, Radlein D (2003) Fast pyrolysis of biomass: a handbook. CPL Scientific Publishing, NewburyGoogle Scholar
  47. 47.
    Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for Bio-oil: a critical review. Energy Fuel 20:848–889CrossRefGoogle Scholar
  48. 48.
    Vinu R, Broadbelt LJ (2012) A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci 5:9808–9826CrossRefGoogle Scholar
  49. 49.
    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRefGoogle Scholar
  50. 50.
    Werpy T, Petersen G (2004) Top value added chemicals from biomass. Volume I – Results of screening for potential candidates from sugars and synthesis gas. Accessed 2 Jun 2014
  51. 51.
    Castillo Martinez FA, Balciunas EM, Salgado JM, Domínguez González JM, Converti A, de S Oliveira RP (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30:70–83CrossRefGoogle Scholar
  52. 52.
    Nattrass L, Higson A (2010) NNFCC renewable chemicals factsheet: lactic acid. Accessed 3 Jun 2014
  53. 53.
    Eriksen J, Mønsted O, Mønsted L (1998) Mechanism of lactic acid formation catalyzed by tetraamine rhodium(III) complexes. Transit Met Chem 23:783–787CrossRefGoogle Scholar
  54. 54.
    Hayashi Y, Sasaki Y (2005) Tin-catalyzed conversion of trioses to alkyl lactates in alcohol solution. Chem Commun (Camb) 21:2716–2718CrossRefGoogle Scholar
  55. 55.
    Janssen KPF, Paul JS, Sels BF, Jacobs PA (2007) Glyoxylase biomimics: zeolite catalyzed conversion of trioses. Stud Surf Sci Catal 170:1222–1227CrossRefGoogle Scholar
  56. 56.
    Taarning E, Madsen AT, Marchetti JM, Egeblad K, Christensen CH (2008) Oxidation of glycerol and propanediols in methanol over heterogeneous gold catalysts. Green Chem 10:408–414CrossRefGoogle Scholar
  57. 57.
    Taarning E, Saravanamurugan S, Holm MS, Xiong J, West RM, Christensen CH (2009) Zeolite-catalyzed isomerization of triose sugars. ChemSusChem 2:625–627CrossRefGoogle Scholar
  58. 58.
    Holm MS, Saravanamurugan S, Taarning E (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328:602–605CrossRefGoogle Scholar
  59. 59.
    West RM, Holm MS, Saravanamurugan S, Xiong J, Beversdorf Z, Taarning E, Christensen CH (2010) Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars. J Catal 269:122–130CrossRefGoogle Scholar
  60. 60.
    Pescarmona PP, Janssen KPF, Delaet C, Stroobants C, Houthoofd K, Philippaerts A, De Jonghe C, Paul JS, Jacobs PA, Sels v (2010) Zeolite-catalysed conversion of C3 sugars to alkyl lactates. Green Chem 12:1083–1089CrossRefGoogle Scholar
  61. 61.
    Rasrendra CB, Fachri BA, Makertihartha IGBN, Adisasmito S, Heeres HJ (2011) Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water. ChemSusChem 4:768–777CrossRefGoogle Scholar
  62. 62.
    Wang J, Masui Y, Onaka M (2011) Conversion of triose sugars with alcohols to alkyl lactates catalyzed by Brønsted acid tin ion-exchanged montmorillonite. Appl Catal B Environ 107:135–139CrossRefGoogle Scholar
  63. 63.
    Li L, Stroobants C, Lin K, Jacobs PA, Sels BF, Pescarmona PP (2011) Selective conversion of trioses to lactates over Lewis acid heterogeneous catalysts. Green Chem 13:1175–1181CrossRefGoogle Scholar
  64. 64.
    De Clippel F, Dusselier M, Van Rompaey R, Vanelderen P, Dijkmans J, Makshina E, Giebeler L, Oswald S, Baron GV, Denayer JFM, Pescarmona PP, Jacobs PA, Sels BF (2012) Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts. J Am Chem Soc 134:10089–10101CrossRefGoogle Scholar
  65. 65.
    Guo Q, Fan F, Pidko EA, van der Graaff WNP, Feng Z, Li C, Hensen EJM (2013) Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid. ChemSusChem 6:1352–1356CrossRefGoogle Scholar
  66. 66.
    Wang F-F, Liu C-L, Dong W-S (2013) Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chem 15:2091–2095CrossRefGoogle Scholar
  67. 67.
    Lux S, Siebenhofer M (2013) Synthesis of lactic acid from dihydroxyacetone: use of alkaline-earth metal hydroxides. Catal Sci Technol 3:1380–1385CrossRefGoogle Scholar
  68. 68.
    Zhou L, Wu L, Li H, Yang X, Su Y, Lu T, Xu J (2014) A facile and efficient method to improve the selectivity of methyl lactate in the chemocatalytic conversion of glucose catalyzed by homogeneous Lewis acid. J Mol Catal A Chem 388–389:74–80CrossRefGoogle Scholar
  69. 69.
    Dapsens PY, Kusema BT, Mondelli C, Pérez-Ramírez J (2014) Gallium-modified zeolites for the selective conversion of bio-based dihydroxyacetone into C1–C4 alkyl lactates. J Mol Catal A Chem 388–389:141–147CrossRefGoogle Scholar
  70. 70.
    Huan FL, Bi R, Liu YH, Li WS, Zhou XP (2014) The synthesis of methyl lactate and other methyl oxygenates from cellulose. Catal Commun 49:78–81CrossRefGoogle Scholar
  71. 71.
    Li L, Collard X, Bertrand A, Sels BF, Pescarmona PP, Aprile C (2014) Extra-small porous Sn-silicate nanoparticles as catalysts for the synthesis of lactates. J Catal 314:56–65CrossRefGoogle Scholar
  72. 72.
    Lei X, Wang F-F, Liu C-L, Yang R-Z, Dong W-S (2014) One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst. Appl Catal A Gen 482:78–83CrossRefGoogle Scholar
  73. 73.
    Assary RS, Curtiss LA (2011) Theoretical study of 1,2-hydride shift associated with the isomerization of glyceraldehyde to dihydroxy acetone by Lewis acid active site models. J Phys Chem A 115:8754–8760CrossRefGoogle Scholar
  74. 74.
    Dapsens PY, Mondelli C, Pérez-Ramírez J (2013) Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid. ChemSusChem 6:831–839CrossRefGoogle Scholar
  75. 75.
    Lew CM, Rajabbeigi N, Tsapatsis M (2012) Tin-containing zeolite for the isomerization of cellulosic sugars. Microporous Mesoporous Mater 153:55–58CrossRefGoogle Scholar
  76. 76.
    Dapsens PY, Menart MJ, Mondelli C, Pérez-Ramírez J (2014) Production of bio-derived ethyl lactate on GaUSY zeolites prepared by post-synthetic galliation. Green Chem 16:589–593CrossRefGoogle Scholar
  77. 77.
    Dijkmans J, Gabriëls D, Dusselier M, de Clippel F, Vanelderen P, Houthoofd K, Malfliet A, Pontikes Y, Sels BF (2013) Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chem 15:2777–2785CrossRefGoogle Scholar
  78. 78.
    Dijkmans J, Dusselier M, Gabriëls D, Houthoofd K, Magusin PCMM, Huang S, Pontikes Y, Trekels M, Vantomme A, Giebeler L, Oswald S, Sels BF (2015) Cooperative catalysis for multistep biomass conversion with Sn/Al beta zeolite. ACS Catal 5:928–940CrossRefGoogle Scholar
  79. 79.
    Ten Dam J, Hanefeld U (2011) Renewable chemicals: dehydroxylation of glycerol and polyols. ChemSusChem 4:1017–1034CrossRefGoogle Scholar
  80. 80.
    Sels BF, D’Hondt E, Jacobs P (2007) Catalytic transformation of glycerol. In: Centi G, van Santen RA (eds) Catalysis for renewables from feedstock to energy production. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 223–255Google Scholar
  81. 81.
    Fan Y, Zhou C, Zhu X (2009) Selective catalysis of lactic acid to produce commodity chemicals. Catal Rev 51:293–324CrossRefGoogle Scholar
  82. 82.
    Dimitratos N, Lopez-Sanchez JA, Meenakshisundaram S, Anthonykutty JM, Brett G, Carley AF, Taylor SH, Knight DW, Hutchings GJ (2009) Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chem 11:1209–1216CrossRefGoogle Scholar
  83. 83.
    Long Y-D, Guo F, Fang Z, Tian X-F, Jiang L-Q, Zhang F (2011) Production of biodiesel and lactic acid from rapeseed oil using sodium silicate as catalyst. Bioresour Technol 102:6884–6886CrossRefGoogle Scholar
  84. 84.
    Purushothaman RKP, van Haveren J, van Es DS, Melián-Cabrera I, Meeldijk JD, Heeres HJ (2014) An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support. Appl Catal B Environ 147:92–100CrossRefGoogle Scholar
  85. 85.
    Shen Y, Zhang S, Li H, Ren Y, Liu H (2010) Efficient synthesis of lactic acid by aerobic oxidation of glycerol on Au-Pt/TiO2 catalysts. Chemistry 16:7368–7371CrossRefGoogle Scholar
  86. 86.
    Lakshmanan P, Upare PP, Le N-T, Hwang YK, Hwang DW, Lee U-H, Kim HR, Chang J-S (2013) Facile synthesis of CeO2-supported gold nanoparticle catalysts for selective oxidation of glycerol into lactic acid. Appl Catal A Gen 468:260–268CrossRefGoogle Scholar
  87. 87.
    Pazhavelikkakath Purushothaman RK, van Haveren J, Melián-Cabrera I, van Eck ERH, Heeres HJ (2014) Base-free, one-pot chemocatalytic conversion of glycerol to methyl lactate using supported gold catalysts. ChemSusChem 7:1140–1147CrossRefGoogle Scholar
  88. 88.
    Cho HJ, Chang C-C, Fan W (2014) Base free, one-pot synthesis of lactic acid from glycerol using a bifunctional Pt/Sn-MFI catalyst. Green Chem 16:3428–3433CrossRefGoogle Scholar
  89. 89.
    Gehrer E, Harder W (1994) Manufacture of 1,2-propyleneglycol. US 5,306,847 AGoogle Scholar
  90. 90.
    Ooms R, Dusselier M, Geboers J, Op de Beeck B, Verhaeven R, Gobechiya E, Martens J, Redl A, Sels BF (2014) Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation. Green Chem 16:695–707CrossRefGoogle Scholar
  91. 91.
    Nakagawa Y, Tomishige K (2011) Heterogeneous catalysis of the glycerol hydrogenolysis. Catal Sci Technol 1:179–190CrossRefGoogle Scholar
  92. 92.
    Holm MS, Pagán-Torres YJ, Saravanamurugan S, Riisager A, Dumesic J, Taarning E (2012) Sn-beta catalysed conversion of hemicellulosic sugars. Green Chem 14:702–706CrossRefGoogle Scholar
  93. 93.
    Henton DE, Gruber P, Lunt J, Randall Jed (2005) Polylactic acid technology. In: Mohanty AK, Misra MM, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. CRC Press, Boca Raton, Florida, pp 527–578Google Scholar
  94. 94.
    Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. Biofuels Bioprod Biorefin 4:25–40CrossRefGoogle Scholar
  95. 95.
    European bioplastics – driving the evolution of plastics (2012). Accessed 25 May 2014
  96. 96.
    Chemical business focus: a monthly roundup and analysis of the key factors shaping world chemical markets (2014). Accessed 20 May 2014
  97. 97.
    Auras R, Lim L-T, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, New YorkGoogle Scholar
  98. 98.
    Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRefGoogle Scholar
  99. 99.
    Choudhary V, Pinar AB, Sandler SI, Vlachos DG, Lobo RF (2011) Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catal 1:1724–1728CrossRefGoogle Scholar
  100. 100.
    Choudhary V, Caratzoulas S, Vlachos DG (2013) Insights into the isomerization of xylose to xylulose and lyxose by a Lewis acid catalyst. Carbohydr Res 368:89–95CrossRefGoogle Scholar
  101. 101.
    Moliner M, Román-Leshkov Y, Davis ME (2010) Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci U S A 107:6164–6168CrossRefGoogle Scholar
  102. 102.
    Román-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Mechanism of glucose isomerization using a solid Lewis acid catalyst in water. Angew Chem 122:9138–9141CrossRefGoogle Scholar
  103. 103.
    Saravanamurugan S, Paniagua M, Melero JA, Riisager A (2013) Efficient isomerization of glucose to fructose over zeolites in consecutive reactions in alcohol and aqueous media. J Am Chem Soc 135:5246–5249CrossRefGoogle Scholar
  104. 104.
    Saravanamurugan S, Riisager A (2014) Zeolite-catalyzed isomerization of tetroses in aqueous medium. Catal Sci Technol 4:3186–3190CrossRefGoogle Scholar
  105. 105.
    Stapley J, Atherton DM, Genders DJ, Kendall PM (2012) Methods for the electrolytic production of erythritol. WO 2012167012 (A2)Google Scholar
  106. 106.
    Stapley JA, Genders DJ, Atherton DM, Kendall PM (2011) Methods for the electrolytic production of erythrose or erythritol. US 7,955,489 B2Google Scholar
  107. 107.
    Benner SA, Kim H-J, Kim M-J, Ricardo A (2010) Planetary organic chemistry and the origins of biomolecules. Cold Spring Harb Perspect Biol 2:1–21CrossRefGoogle Scholar
  108. 108.
    Simonov AN, Pestunova OP, Matvienko LG, Snytnikov VN, Snytnikova OA, Tsentalovich YP, Parmon VN (2007) Possible prebiotic synthesis of monosaccharides from formaldehyde in presence of phosphates. Adv Space Res 40:1634–1640CrossRefGoogle Scholar
  109. 109.
    Hollis JM, Lovas FJ, Jewell PR (2000) Interstellar glycolaldehyde: the first sugar. Astrophys J 107–110Google Scholar
  110. 110.
    Balat M, Balat M, Kırtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Convers Manag 50:3147–3157CrossRefGoogle Scholar
  111. 111.
    Vitasari CR, Meindersma GW, de Haan AB (2012) Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock. Green Chem 14:321–325CrossRefGoogle Scholar
  112. 112.
    Vitasari CR, Meindersma GW, de Haan AB (2012) Renewable glycolaldehyde isolation from pyrolysis oil-derived aqueous solution by reactive extraction with primary amines. Sep Purif Technol 95:103–108CrossRefGoogle Scholar
  113. 113.
    Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery—polyglycolic/poly(actic acid) homo- and copolymers: 1. Polymer (Guildf) 20:1459–1464CrossRefGoogle Scholar
  114. 114.
    Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE (2011) Functional aliphatic polyesters for biomedical and pharmaceutical applications. J Control Release 152:168–176CrossRefGoogle Scholar
  115. 115.
    Dapsens PY, Mondelli C, Kusema BT, Verel R, Pérez-Ramírez J (2014) A continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts. Green Chem 16:1176–1186CrossRefGoogle Scholar
  116. 116.
    Sipilä K, Kuoppala E, Fagernäs L, Oasmaa A (1998) Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy 14:103–113CrossRefGoogle Scholar
  117. 117.
    Ohshima T, Yamamoto Y, Takaki U, Inoue Y, Saeki T, Itou K, Maegawa Y, Iwasaki T, Mashima K (2009) Theoretical study of Al(III)-catalyzed conversion of glyoxal to glycolic acid: dual activated 1,2-hydride shift mechanism by protonated Al(OH)3 species. Chem Commun (Camb) 19:2688–2690CrossRefGoogle Scholar
  118. 118.
    McNaught AD (1996) Nomenclature of carbohydrates. Pure Appl Chem 68:1919–2008CrossRefGoogle Scholar
  119. 119.
    Butlerow A (1861) Bildung einer zuckerartigen Substanz durch Synthese. Justus Liebigs Ann Chem 120:295–298CrossRefGoogle Scholar
  120. 120.
    Partridge RD, Weiss AH, Todd D (1972) Branched-chain carbohydrate structures resulting from formaldehyde condensation. Carbohydr Res 24:29–44CrossRefGoogle Scholar
  121. 121.
    Delidovich IV, Simonov AN, Taran OP (2014) Catalytic formation of monosaccharides: from the formose reaction towards selective synthesis. ChemsusChem Minirev 7:1833–1846CrossRefGoogle Scholar
  122. 122.
    Kim H-J, Ricardo A, Illangkoon HI, Kim MJ, Carrigan MA, Frye F, Benner SA (2011) Synthesis of carbohydrates in mineral-guided prebiotic cycles. J Am Chem Soc 133:9457–9468CrossRefGoogle Scholar
  123. 123.
    Weiss A (1970) Homogeneously catalyzed formaldehyde condensation to carbohydrates. J Catal 16:332–347CrossRefGoogle Scholar
  124. 124.
    Castells J, López-Calahorra F, Geijo F (1983) The formoin reaction. Carbohydr Res 116:197–207CrossRefGoogle Scholar
  125. 125.
    Vetter AJ, Janka ME, Zoeller JR (2009) Coupling of formaldehyde to glycoaldehyde using N-heterocyclic carbene catalysts. US7498469 B1Google Scholar
  126. 126.
    Tajima H, Niitsu T, Inoue H (1999) Polymerization of formaldehyde by an immobilized thiamine catalyst on cation-exchange resin. J Chem Eng Japan 32:776–782CrossRefGoogle Scholar
  127. 127.
    Tajima H, Tabata K, Niitsu T, Inoue H (2002) The formose reaction on a synthetic zeolite impregnated with thiazolium catalyst. J Chem Eng Japan 35:564–568CrossRefGoogle Scholar
  128. 128.
    Zhang J, Xing C, Tiwari B, Chi YR (2013) Catalytic activation of carbohydrates as formaldehyde equivalents for Stetter reaction with enones. J Am Chem Soc 135:8113–8116CrossRefGoogle Scholar
  129. 129.
    Yamaguchi S, Matsuo T, Motokura K, Sakamoto Y, Miyaji A, Baba T (2015) Mechanistic studies on the cascade conversion of 1,3-dihydroxyacetone and formaldehyde into α-hydroxy-γ-butyrolactone. ChemSusChem 8:853–860CrossRefGoogle Scholar
  130. 130.
    Garrabou X, Castillo JA, Guérard-Hélaine C, Parella T, Joglar J, Lemaire M, Clapés P (2009) Asymmetric self- and cross-aldol reactions of glycolaldehyde catalyzed by D-fructose-6-phosphate aldolase. Angew Chem Int Ed 48:5521–5525CrossRefGoogle Scholar
  131. 131.
    Van de Vyver S, Odermatt C, Romero K, Prasomsri T, Roman-Leshkov Y (2015) Solid Lewis acids catalyze the carbon−carbon coupling between carbohydrates and formaldehyde. ACS Catal 5:972–977CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Center for Surface Chemistry and CatalysisLeuvenBelgium

Personalised recommendations