Skip to main content

Abstract

Efficient hydrolysis of cellulosic biomass to glucose is a grand challenge for the realization of a nonfood biorefinery. In recent years, solid catalysts have attracted significant attention for biomass conversion, as they can be separated from product solutions and their functions can be designed. In this chapter, we describe activated carbons that can hydrolyze cellulose and real biomass to glucose in yields up to 88 % in the presence of a trace amount of hydrochloric acid. Creating contacts between the solid catalyst and the solid substrate by ball-milling is the key to realizing the potential of this catalytic system. Activated carbon adsorbs cellulosic molecules by van der Waals forces, CH−π hydrogen bonds, and hydrophobic interactions between the polyaromatic surface of the carbon and the axial planes of glucans, namely, hydrophobic groups. Subsequently, the weakly acidic groups of the carbon surface such as carboxylic acids cleave the glycosidic bonds of cellulose via oxocarbenium intermediates, for which the salicylic acid structure is especially effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558. doi:10.1039/C1CS15147A

    Article  CAS  Google Scholar 

  2. Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15:1740–1763. doi:10.1039/c3gc00060e

    Article  CAS  Google Scholar 

  3. Fukuoka A, Dhepe PL (2006) Catalytic conversion of cellulose into sugar alcohols. Angew Chem Int Ed 45:5161–5163. doi:10.1002/anie.200601921

    Article  CAS  Google Scholar 

  4. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793. doi:10.1021/ja803983h

    Article  CAS  Google Scholar 

  5. Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10:1033–1037. doi:10.1039/b808471h

    Article  CAS  Google Scholar 

  6. Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050. doi:10.1002/anie.200802879

    Article  CAS  Google Scholar 

  7. Rinaldi R, Meine N, vom Stein J, Palkovits R, Schüth F (2010) Which controls the depolymerization of cellulose in ionic liquids: the solid acid catalyst or cellulose? ChemSusChem 3:266–276. doi:10.1002/cssc.200900281

    Article  CAS  Google Scholar 

  8. Van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem 12:1560–1563. doi:10.1039/c0gc00235f

    Article  Google Scholar 

  9. Pang J, Wang A, Zheng M, Zhang T (2010) Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem Commun 46:6935–6937. doi:10.1039/c0cc02014a

    Article  CAS  Google Scholar 

  10. Wang H, Zhang C, He H, Wang L (2012) Glucose production from hydrolysis of cellulose over a novel silica catalyst under hydrothermal conditions. J Environ Sci 24:473–478. doi:10.1016/S1001-0742(11)60795-X

    Article  CAS  Google Scholar 

  11. Zhao X, Wang J, Chen C, Huang Y, Wang A, Zhang T (2014) Graphene oxide for cellulose hydrolysis: how it works as a highly active catalyst? Chem Commun 50:3439–3442. doi:10.1039/c3cc49634a

    Article  CAS  Google Scholar 

  12. Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG (2010) Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem 12:468–474. doi:10.1039/b923079c

    Article  CAS  Google Scholar 

  13. Zechel DL, Withers SG (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res 33:11–18. doi:10.1021/ar970172

    Article  CAS  Google Scholar 

  14. Chung PW, Charmot A, Olatunji-Ojo OA, Durkin KA, Katz A (2014) Hydrolysis catalysis of Miscanthus xylan to xylose using weak-acid surface sites. ACS Catal 4:302–310. doi:10.1021/cs400939p

    Article  CAS  Google Scholar 

  15. Kobayashi H, Yabushita M, Komanoya T, Hara K, Fujita I, Fukuoka A (2013) High-yielding one-pot synthesis of glucose from cellulose using simple activated carbons and trace hydrochloric acid. ACS Catal 3:581–587. doi:10.1021/cs300845f

    Article  CAS  Google Scholar 

  16. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713. doi:10.1021/ja002261e

    Article  CAS  Google Scholar 

  17. Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem 3:440–443. doi:10.1002/cssc.200900296

    Article  CAS  Google Scholar 

  18. Komanoya T, Kobayashi H, Hara K, Chun WJ, Fukuoka A (2011) Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis. Appl Catal A Gen 407:188–194. doi:10.1016/j.apcata.2011.08.039

    Article  CAS  Google Scholar 

  19. Pang J, Wang A, Zheng M, Zhang Y, Huang Y, Chen X, Zhang T (2012) Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts. Green Chem 14:614–617. doi:10.1039/c2gc16364k

    Article  CAS  Google Scholar 

  20. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769. doi:10.1016/0008-6223(94)90031-0

    Article  CAS  Google Scholar 

  21. Yabushita M, Kobayashi H, Hara K, Fukuoka A (2014) Quantitative evaluation of ball-milling effects on the hydrolysis of cellulose catalysed by activated carbon. Catal Sci Technol 4:2312–2317. doi:10.1039/C4CY00175C

    Article  CAS  Google Scholar 

  22. McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules 18:2394–2401. doi:10.1021/ma00154a010

    Article  CAS  Google Scholar 

  23. Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun 47:5590–5592. doi:10.1039/c1cc10422e

    Article  CAS  Google Scholar 

  24. Gazit OM, Charmot A, Katz A (2011) Grafted cellulose strands on the surface of silica: effect of environment on reactivity. Chem Commun 47:376–378. doi:10.1039/c0cc02105a

    Article  CAS  Google Scholar 

  25. Gazit OM, Katz A (2012) Grafted poly(1→4-β-glucan) strands on silica: a comparative study of surface reactivity as a function of grafting density. Langmuir 28:431–437. doi:10.1021/la2036482

    Article  CAS  Google Scholar 

  26. Gazit OM, Katz A (2013) Understanding the role of defect sites in glucan hydrolysis on surfaces. J Am Chem Soc 135:4398–4402. doi:10.1021/ja311918z

    Article  CAS  Google Scholar 

  27. Yabushita M, Kobayashi H, Hasegawa J, Hara K, Fukuoka A (2014) Entropically favored adsorption of cellulosic molecules onto carbon materials through hydrophobic functionalities. ChemSusChem 7:1443–1450. doi:10.1002/cssc.201301296

    Article  CAS  Google Scholar 

  28. Chung PW, Charmot A, Gazit OM, Katz A (2012) Glucan adsorption on mesoporous carbon nanoparticles: effect of chain length and internal surface. Langmuir 28:15222–15232. doi:10.1021/la3030364

    Article  CAS  Google Scholar 

  29. Bul S, Verykios X, Mutharasan R (1985) In situ removal of ethanol from fermentation broths. 1. Selective adsorption characteristics. Ind Eng Chem Process Des Dev 24:1209–1213. doi:10.1021/i200031a052

    Article  Google Scholar 

  30. Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M (2009) Adsorption-enhanced hydrolysis of β-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir 25:5068–5075. doi:10.1021/la8040506

    Article  CAS  Google Scholar 

  31. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) The magnitude of the CH/p interaction between benzene and some model hydrocarbons. J Am Chem Soc 122:3746–3753. doi:10.1021/ja993972j

    Article  CAS  Google Scholar 

  32. Franks F (1975) The hydrophobic interaction. In: Franks F (ed) Water a comprehensive treatise, vol 4. Plenum Press, New York

    Chapter  Google Scholar 

  33. Charmot A, Chung PW, Katz A (2014) Catalytic hydrolysis of cellulose to glucose using weak-acid surface sites on postsynthetically modified carbon. ACS Sustain Chem Eng 2:2866–2872. doi:10.1021/sc500669q

    Article  CAS  Google Scholar 

  34. Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739–5751

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Fukuoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kobayashi, H., Yabushita, M., Fukuoka, A. (2016). Depolymerization of Cellulosic Biomass Catalyzed by Activated Carbons. In: Schlaf, M., Zhang, Z. (eds) Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-688-1_2

Download citation

Publish with us

Policies and ethics