Skip to main content

Strategies for Studying and Improving the Zn/Br RFB

  • Chapter
  • First Online:
Book cover The Zinc/Bromine Flow Battery

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 1566 Accesses

Abstract

From the problems outlined for each technological challenge described in previous chapters, some promising strategies have been formulated for increasing knowledge about and improving the electrochemical and physical processes of Zn/Br systems, particularly at the electrode–electrolyte interface. This chapter presents a condensed collation of these focused strategies, aimed at improving Zn/Br flow battery technology. New-found understanding from fundamental studies would allow clear identification of promising investigative pathways and reduce the time and effort involved in developing tailor-made solutions to reduce or circumvent internal sources of losses (e.g. due to undesirable side reactions), consequently reducing costs while improving operating efficiencies and practical specific energy. For maximum gain, proposals are made for short-term research on two fronts, namely computer modeling and electrochemical studies. That combination would allow rapid discovery and implementation of solutions, both for developing novel materials and for characterizing the Zn/Br system’s behavior under various combinations of physicochemical conditions. Simulations using sophisticated modeling techniques with adjustments based on accurate empirical parameters and correlations would significantly minimize the time and cost of the experimental investigations required to develop suitable materials for use in Zn/Br batteries. These simulations include periodic density functional calculations and multi-physics models of the system. On the experimental front, impedance spectroscopy is a sensitive and highly informative technique that can be used to both study and track even minor changes to Zn/Br system behavior contingent upon variations of chemical composition, physical arrangements and operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karden E, Buller S, De Doncker RW (2000) A method for measurement and interpretation of impedance spectra for industrial batteries. J Power Sources 85:72–78. doi:10.1016/S0378-7753(99)00385-7

    Article  Google Scholar 

  2. Xu Q, Zhao TS (2015) Fundamental models for flow batteries. Prog Energy Combust Sci 49:40–58. doi:10.1016/j.pecs.2015.02.001

    Article  Google Scholar 

  3. Shah AA, Al-Fetlawi H, Walsh FC (2010) Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochim Acta 55:1125–1139. doi:10.1016/j.electacta.2009.10.022

    Article  Google Scholar 

  4. Al-Fetlawi H, Shah AA, Walsh FC (2010) Modelling the effects of oxygen evolution in the all-vanadium redox flow battery. Electrochim Acta 55:3192–3205. doi:10.1016/j.electacta.2009.12.085

    Article  Google Scholar 

  5. Aaron DS, Liu Q, Tang Z et al (2012) Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J Power Sources 206:450–453. doi:10.1016/j.jpowsour.2011.12.026

    Article  Google Scholar 

  6. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons Inc, New York

    Google Scholar 

  7. Yuan X, Wang H, Colinsun J, Zhang J (2007) AC impedance technique in PEM fuel cell diagnosis—A review. Int J Hydrogen Energy 32:4365–4380. doi:10.1016/j.ijhydene.2007.05.036

    Article  Google Scholar 

  8. Huang Q-A, Hui R, Wang B, Zhang J (2007) A review of AC impedance modeling and validation in SOFC diagnosis. Electrochim Acta 52:8144–8164. doi:10.1016/j.electacta.2007.05.071

    Article  Google Scholar 

  9. Lvovich VF (2012) Impedance spectroscopy: applications to electrochemical and dielectric phenomena. Wiley, Hoboken

    Book  Google Scholar 

  10. Orazem ME, Tribollet B (2008) Electrochemical impedance. Spectroscopy. doi:10.1002/9780470381588

    Google Scholar 

  11. Shih H, Lo T-C (1996) Electrochemical impedance spectroscopy for battery research and development. Solartron Group Ltd., Hampshire

    Google Scholar 

  12. Park S, Yoo J-S (2003) Peer reviewed: electrochemical impedance spectroscopy for better electrochemical measurements. analytical chemistry 75:455 A–461 A. doi: 10.1021/ac0313973

    Google Scholar 

  13. Chang B-Y, Park S-M (2010) Electrochemical impedance spectroscopy. annual review of analytical chemistry (Palo Alto, Calif) 3:207–229. doi: 10.1146/annurev.anchem.012809.102211

    Google Scholar 

  14. Chang B-Y, Park S-M (2006) Integrated description of electrode/electrolyte interfaces based on equivalent circuits and its verification using impedance measurements. Anal Chem 78:1052–1060. doi:10.1021/ac051641l

    Article  Google Scholar 

  15. Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92:2793–2810. doi:10.1016/j.compstruct.2010.05.003

    Article  Google Scholar 

  16. Qian H, Greenhalgh ES, Shaffer MSP, Bismarck A (2010) Carbon nanotube-based hierarchical composites: a review. J Mater Chem 20:4751. doi:10.1039/c000041h

    Article  Google Scholar 

  17. Švancara I, Walcarius A, Kalcher K, Vytřas K (2009) Carbon paste electrodes in the new millennium. Cent Eur J Chem 7:598–656. doi:10.2478/s11532-009-0097-9

    Article  Google Scholar 

  18. Yang S-C (1994) An approximate model for estimating the faradaic efficiency loss in zinc/bromine batteries caused by cell self-discharge. J Power Sources 50:343–360. doi:10.1016/0378-7753(94)01910-X

    Article  Google Scholar 

  19. Lex PJ, Matthews JF (1992) Recent developments in zinc/bromine battery technology at Johnson controls. IEEE 35th International Power Sources Symposium. IEEE, pp 88–92

    Google Scholar 

  20. Simpson GD (1990) A simple model for a zinc/bromine flow cell and associated storage tanks. J Electrochem Soc 137:1843–1846. doi:10.1149/1.2086813

    Article  Google Scholar 

  21. Simpson GD (1989) An algebraic model for a zinc/bromine flow cell. J Electrochem Soc 136:2137–2144. doi:10.1149/1.2097226

    Article  Google Scholar 

  22. Evans TI, White RE (1987) A review of mathematical modeling of the zinc/bromine flow cell and battery. J Electrochem Soc 134:2725. doi:10.1149/1.2100277

    Article  Google Scholar 

  23. Evans TI, White RE (1987) A mathematical model of a zinc/bromine flow cell. J Electrochem Soc 134:866. doi:10.1149/1.2100588

    Article  Google Scholar 

  24. Mader MJ (1986) A mathematical model of a Zn∕Br 2 cell on charge. J Electrochem Soc 133:1297. doi:10.1149/1.2108857

    Article  Google Scholar 

  25. Manla E, Nasiri A, Rentel CH, Hughes M (2010) Modeling of zinc bromide energy storage for vehicular applications. IEEE Trans Industr Electron 57:624–632. doi:10.1109/TIE.2009.2030765

    Article  Google Scholar 

  26. Blanc C, Rufer A (2008) Multiphysics and energetic modeling of a vanadium redox flow battery. 2008 IEEE International Conference on Sustainable Energy Technologies. IEEE, Singapore, pp 696–701

    Google Scholar 

  27. Ke X, Alexander JID, Prahl JM, Savinell RF (2014) Flow distribution and maximum current density studies in redox flow batteries with a single passage of the serpentine flow channel. J Power Sources 270:646–657. doi:10.1016/j.jpowsour.2014.07.155

    Article  Google Scholar 

  28. Jyothi Latha T, Jayanti S (2014) Hydrodynamic analysis of flow fields for redox flow battery applications. J Applied Electrochemistry 44:995–1006. doi:10.1007/s10800-014-0720-0

    Article  Google Scholar 

  29. Guo N, Leu MC, Koylu UO (2014) Bio-inspired flow field designs for polymer electrolyte membrane fuel cells. Int J Hydrogen Energy 39:21185–21195. doi:10.1016/j.ijhydene.2014.10.069

    Article  Google Scholar 

  30. Piller S, Perrin M, Jossen A (2001) Methods for state-of-charge determination and their applications. J Power Sources 96:113–120. doi:10.1016/S0378-7753(01)00560-2

    Article  Google Scholar 

  31. Rodrigues S, Munichandraiah N, Shukla AK (2000) A review of state-of-charge indication of batteries by means of a.c. impedance measurements. J Power Sources 87:12–20. doi:10.1016/S0378-7753(99)00351-1

    Article  Google Scholar 

  32. Huet F (1998) A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries. J Power Sources 70:59–69. doi:10.1016/S0378-7753(97)02665-7

    Article  Google Scholar 

  33. Jeon J-D, Yang HS, Shim J et al (2014) Dual function of quaternary ammonium in Zn/Br redox flow battery: capturing the bromine and lowering the charge transfer resistance. Electrochim Acta 127:397–402. doi:10.1016/j.electacta.2014.02.073

    Article  Google Scholar 

  34. The University of Sydney (2015) Centre for sustainable energy development—School of chemical and biomolecular engineering—The University of Sydney. http://sydney.edu.au/engineering/chemical/research/centre-sustainable-energy-development

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobinath Pillai Rajarathnam .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Rajarathnam, G.P., Vassallo, A.M. (2016). Strategies for Studying and Improving the Zn/Br RFB. In: The Zinc/Bromine Flow Battery. SpringerBriefs in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-287-646-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-646-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-645-4

  • Online ISBN: 978-981-287-646-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics