Agamuthu P (2008) Challenges in sustainable management of construction and demolition waste. Waste Manage Res 26(6):491–492
CAS
CrossRef
Google Scholar
Alba MD, Marrero M, Leiva C et al (2012) Empleo de paneles compuestos por subproductos de centrales térmicas en fachadas trasdosadas (Façade solutions using panels made of power plant byproducts). Inf Constr 64:179–190
CrossRef
Google Scholar
Andrade LB, Rocha JC, Cheriaf M (2007) Evaluation of concrete incorporating bottom ash as a natural aggregates replacement. Waste Manage 27:1190–1199
CAS
CrossRef
Google Scholar
ASTM C127-12 (2012) Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. ASTM International, West Conshohocken, PA
Google Scholar
ASTM C348-14 (2014) Standard test method for flexural strength of hydraulic-cement mortars. ASTM International, West Conshohocken, PA
Google Scholar
ASTM D3682-13 (2013) Standard test method for major and minor elements in combustion residues from coal utilization processes. ASTM International, West Conshohocken, PA
Google Scholar
ASTM E761-92 (2011) Standard test method for compressive strength of sprayed fire-resistive material applied to structural members. ASTM International, West Conshohocken, PA
Google Scholar
Babu KG, Bao SN (1996) Efficiency of fly ash in concrete with age. Cem Concr Res 26:465–474
CAS
CrossRef
Google Scholar
Bhattacharyya JK, Shekdar AV, Gaikwad SA (2004) Recyclability of some major industrial solid wastes. J Indian Assoc Environ Manage 31:71–75
CAS
Google Scholar
Bijen J, Selts RV (1993) Cement equivalence factors for the fly ashes. Cem Concr Res 23:1029–1039
CAS
CrossRef
Google Scholar
Bilodeau A, Malhorta VM (2000) High volume fly ash system: concrete solution for sustainable development. ACI Mater J 97(1):41–49
CAS
Google Scholar
BS 8500-2 (2006) Concrete. Complementary British Standard to BS EN 206-1. Part 2: Specification for constituent materials and concrete
Google Scholar
Central Pollution Control Board (CPCB) (2005) Available via MOEF India home page. http://cpcb.nic.in/. Accessed 18 Mar 2015
Cheng TW, Chiu JP (2003) Fire-resistant geopolymer produced by granulated blast furnace slag. Miner Eng 16(3):205–210
CAS
CrossRef
Google Scholar
Corinaldesi V, Moriconi G (2010) Recycling of rubble from building demolition for low-shrinkage concretes. Waste Manage 30(4):655–659
Google Scholar
Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste
Google Scholar
De Juan MS, Alaejos P (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater 23:872–877
CrossRef
Google Scholar
Decree on Soil Quality (2007) Decree no. 469 of 2007 containing rules relative to quality of soil. Besluit van 22 November 2007, houdende regels inzake de kwaliteit van de bodem (Besluit bodemkwaliteit). p. 137, Staatsblad van het Koninkrijk der Nederlanden, The Hague
Google Scholar
Demirboga R (2003) Thermo-mechanical properties of sand and high volume mineral admixtures. Energy Build 35(5):435–439
CrossRef
Google Scholar
Demirboga R, Gül R (2003) Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures. Energy Build 35:1155–1159
CrossRef
Google Scholar
Demirboga R, Türkmen I, Burhan M (2007) Thermo-mechanical properties of concrete containing high-volume mineral admixtures. Build Environ 42(1):349–354
CrossRef
Google Scholar
DIN 4226-100 (2002) Aggregates for concrete and mortar—Part 100: Recycled aggregates
Google Scholar
Directive 2003/33/EC of the European Parliament and of the Council of 26 May 2003 on the approximation of the laws, regulations and administrative provisions of the Member States relating to the advertising and sponsorship of tobacco products
Google Scholar
EN 12457-4 (2003) Characterization of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction)
Google Scholar
EN 12859 (2012) Gypsum blocks—definitions, requirements and test methods
Google Scholar
EN 1363-1 (2000) Fire resistance tests. Part 1: General requirements
Google Scholar
EN 196-3 (2005) Methods of testing cement—Part 3: Determination of setting times and soundness
Google Scholar
EN 197-1 (2011) Cement. Part 1: Composition, specifications and conformity criteria for common cements
Google Scholar
EN 450-1 (2013) Fly ash for concrete. Part 1: Definitions, specifications and conformity criteria
Google Scholar
EN 933-1 (2012) Tests for geometrical properties of aggregates—Part 1: Determination of particle size distribution—Sieving method
Google Scholar
EN 993-15 (2005) Methods of test for dense shaped refractory products—Determination of thermal conductivity by the hot-wire (parallel) method
Google Scholar
Espejo Escudero JF (2009) Aislamiento y reciclado de subproductos de la generación de energía y de residuos de demolición como elementos constructivos de separación. BS thesis, University of Seville
Google Scholar
Etxeberria M, Vázquez E, Marí A et al (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem Concr Res 37:735–742
CAS
CrossRef
Google Scholar
European Commission (1999) Radiation protection 112. Radiological protection principles concerning the natural radioactivity of building materials. Directorate-General, environment, nuclear safety and civil protection
Google Scholar
Evangelista L, De Brito J (2007) Mechanical behavior of concrete made with fine recycled concrete aggregates. Cem Concr Compos 29:397–401
CAS
CrossRef
Google Scholar
García Arenas C, Marrero M, Leiva C et al (2011) High fire resistance in blocks containing coal combustion fly ashes and bottom ash. Waste Manage 31:1783–1789
CrossRef
Google Scholar
Garg M, Singh M, Kumar R (1996) Some aspects of the durability of a phosphogypsum-lime-fly ash binder. Constr Build Mater 10(4):273–279
CrossRef
Google Scholar
Gomes CFS, Nunes KRA, Xavier LH et al (2008) Multicriteria decision making applied to waste recycling in Brazil. Omega 36:395–404
CrossRef
Google Scholar
González A, Navia R, Moreno N (2009) Fly ashes from coal and petroleum coke combustion: current and innovative potential applications. Waste Manage Res 27:976–987
CrossRef
Google Scholar
González-Madariaga FJ, Lloveras-Macia J (2008) Mezclas de residuos de poliestireno expandido (EPS) conglomerados con yeso o escayola para su uso en la construcción (Mixtures of wastes from expanded polystyrene (EPS) conglomerated with gypsum or plaster for its use in construction). Inf Constr 60:35–43
CrossRef
Google Scholar
Gupta TN (ed) (1998) Building materials in India: 50 years, a commemorative volume. Building Materials Technology Promotion Council Government of India, New Delhi
Google Scholar
Hernández-Olivares F, Barluenga G (2004) Fire performance of recycled rubber-filled high-strength concrete. Cem Concr Res 34(1):109–117
CrossRef
Google Scholar
Juric B, Hanzic L, Ilic R et al (2006) Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Manage 26:1436–1442
CAS
CrossRef
Google Scholar
Kodur VKR, Sultan MA (2003) Effect of temperature on thermal properties of high-strength concrete. J Mater Civil Eng 15(2):101–107
CAS
CrossRef
Google Scholar
Kumar S (2002) A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development. Constr Build Mater 16(8):519–525
CrossRef
Google Scholar
Kumar S (2003) Fly ash-lime-phosphogympsum hollow blocks for walls and partitions. Build Environ 38(2):291–295
CrossRef
Google Scholar
Lam L, Wong YL, Poon CS (1998) Effect of fly ash and silica fume on compressive and fracture behaviors of concrete. Cem Concr Res 28(2):271–283
CAS
CrossRef
Google Scholar
Lee HK, Kim HK, Hwang EA (2010) Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete. Waste Manage 30:274–284
CAS
CrossRef
Google Scholar
Leiva C (2006) Desarrollo y especificaciones técnicas de productos ignífugos fabricados a partir de residuos industriales, para su uso como elementos constructivos de separación (Development and technical specifications of fire resistant products made of industrial waste for its use as partition constructive elements). Ph.D thesis, University of Seville
Google Scholar
Leiva C, Vilches LF, Fernández-Pereira C et al (2005) Influence of the type of ash on the fire resistance characteristics of ash–enriched mortars. Fuel 84:1433–1439
CAS
CrossRef
Google Scholar
Leiva C, Vilches LF, Vale J et al (2009) Fire resistance of biomass ash panels used for internal partitions in buildings. Fire Safety J 44(4):622–628
CAS
CrossRef
Google Scholar
Leiva C, García Arenas C, Vilches LF et al (2010) Use of FGD gypsum in fire resistant panels. Waste Manage 30:1123–1129
CAS
CrossRef
Google Scholar
Leiva C, Solís-Guzmán J, Marrero M et al (2013) Recycled blocks with improved sound and fire insulation containing construction and demolition waste. Waste Manage 33(3):663–671
CrossRef
Google Scholar
Levy SM, Helene P (2004) Durability of recycled aggregates concrete: a safe way to sustainable development. Cem Concr Res 34:1975–1980
CAS
CrossRef
Google Scholar
Lin KL, Wu HH, Shie JL et al (2010) Recycling waste brick from construction and demolition of buildings as pozzolanic materials. Waste Manage Res 28(7):653–659
Google Scholar
Marrero M, Martínez-Escobar L, Mercader MP et al (2013) Minimización del impacto ambiental en la ejecución de fachadas mediante el empleo de materiales reciclados (Environmental impact minimization of building façades by means of recycled material usage). Inf Constr 65:89–97
CrossRef
Google Scholar
Martín-Morales M, Zamorano M, Ruiz-Moyano A et al (2011) Characterization of recycled aggregates construction and demolition waste for concrete production following the Spanish Structural Concrete Code EHE-08. Constr Build Mater 25:742–748
Google Scholar
Mercader MP, Marrero M, Solís-Guzmán J et al (2010) Cuantificación de los recursos materiales consumidos en la ejecución de la cimentación (Quantification of material resources consumed during concrete slab construction). Inf Constr 62:125–132
CrossRef
Google Scholar
Merlet JD, Pimienta P (1994) Mechanical and physico-chemical properties of concrete produced with coarse and fine recycled concrete aggregates. Paper presented at the 3rd International RILEM Symposium on Demolition and Reuse of Concrete and Masonry, Odense, Denmark, 24–27 Oct 1993
Google Scholar
Morabito P (1989) Measurement of the thermal properties of different concretes. High Temp-High Pressures 21:51–59
CAS
Google Scholar
NEN 7345 (1995) Leaching characteristics of solid earthy and stony building and waste materials—Leaching tests—Determination of the leaching of inorganic components from buildings and monolitic waste materials with the diffusion test
Google Scholar
Oikonomou ND (2005) Recycled concrete aggregates. Cem Concr Compos 27:315–318
CAS
CrossRef
Google Scholar
Order on Re-use of Slag (1996) Generalitat de Catalunya
Google Scholar
Order on Re-use of Slag (2003) Decreto 34/2003. Comunidad Autónoma del País Vasco
Google Scholar
Osmani M, Glass J, Price ADF (2008) Architects’ perspectives on construction waste reduction by design. Waste Manage 28:1147–1158
CAS
CrossRef
Google Scholar
Özkan O, Yüzsel I, Muratoglu Ö (2007) Strength properties of concrete incorporating coal bottom ash and granulated furnace slag. Waste Manage 27:161–167
CrossRef
Google Scholar
Papadakis VG (1999) Effect of fly ash on Portland cement systems: Part I. Low-calcium fly ash. Cem Concr Res 29(11):1727–1736
CAS
CrossRef
Google Scholar
Pérez Arnal I (2008) Ecoproductos para la arquitectura y el diseño. AxE - Arquitectura y Entorno S.L., Barcelona
Google Scholar
Poon CS, Kou SC, Lam L (2002) Use of recycled aggregates in molded concrete bricks and blocks. Constr Build Mater 16:281–289
CrossRef
Google Scholar
Pressler JW (1984) Chemistry and technology of gypsum. ASTM Special Technical Publication, Atlanta, pp 105–115
CrossRef
Google Scholar
Rahal K (2007) Mechanical properties of concrete with recycled coarse aggregate. Build Environ 42:407–415
CrossRef
Google Scholar
RILEM (International union of testing and research laboratories for materials and structures) (1994) Specifications for concrete with recycled aggregates. Mater Struct 27:557–559
CrossRef
Google Scholar
Rolón JC, Nieves D, Huete R et al (2007) Caracterización del hormigón elaborado con áridos reciclados producto de la demolición de estructuras de hormigón (Characterization of concrete made with recycled aggregate from concrete demolition waste). Mater Construcc 57:5–15
Google Scholar
Saxena M, Mishra CR (2004) Processing of red mud for development of wood substitutes. Book on recycling, waste treatment and clean technology, Vol. 1. TMS Mineral, Metals and Materials, Spain, pp 371–380
Google Scholar
Sglavo VM, Stefano M, Alexia C et al (2000) Bauxite ‘red mud’ in the ceramic industry. Part 2: production of clay-based ceramics. J Eur Ceram Soc 20:245–252
CAS
CrossRef
Google Scholar
Shim Y-S, Rhee S-W, Lee W-K (2005) Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan. Waste Manage 25:473–480
CAS
CrossRef
Google Scholar
Singh M, Garg M (1997) Durability of cementitious binder derived from industrial wastes. Mater Struct 30:607–612
CAS
CrossRef
Google Scholar
Singh M, Verma CL, Garg M et al (2003) Processing of Phosphogypsum for value added building materials. In: Recycling and reuse of waste materials: proceedings of the international symposium on advances in waste management and recycling. Dundee, pp 165–172
Google Scholar
Spain ME (Ministry of the environment) (2001) Plan Nacional de Residuos de Construcción y Demolición 2001–2006 (National plan for C&D waste 2001–2006). Madrid
Google Scholar
Spain MH (Ministry of housing) (2009) Código Técnico de la Edificación (Technical code of construction). Madrid
Google Scholar
Spain MP (Ministry of the presidency) (2008) Real Decreto 105/2008, de 1 de Febrero, por el que se Regula la Producción y Gestión de los Residuos de Construcción y Demolición (Royal Decree 105/2008, February 1, which regulates the production and management of construction and demolition waste). Madrid
Google Scholar
Spain MPW (Ministry of public works), (2008) Instrucción del hormigón estructural (EHE-08), BOE, nº203 Suplemento
Google Scholar
Tabsh SW, Abdelfatah AS (2009) Influence of recycled concrete aggregates on strength properties of concrete. Constr Build Mater 23:1163–1167
CrossRef
Google Scholar
Thomas G (2002) Thermal properties of gypsum plasterboard at high temperatures. Fire Mater 26:37–45
CAS
CrossRef
Google Scholar
UNE 136001 EX (1995) Prefabricated clay and gypsum panels. Definitions and specifications
Google Scholar
Vegas I, Azkarate I, Juarrero A et al (2009) Design and performance of masonry mortars made with recycled concrete aggregates. Mater Constr 59(295):5–18
Google Scholar
Vilches LF, Leiva C, Vale J et al (2005a) Insulating capacity of fly ash pastes used for passive protection against fire. Cem Concr Compos 27:776–781
CAS
CrossRef
Google Scholar
Vilches LF, Leiva C, Olivares J et al (2005b) Coal fly ash-containing sprayed mortar for passive fire protection of steel sections. Mater Construcc 55:25–37
CAS
CrossRef
Google Scholar
Vilches LF, Leiva C, Vale J et al (2007) Fire resistance characteristics of plates containing a high biomass-ash proportion. Ind Eng Chem Res 46:4824–4829
CAS
CrossRef
Google Scholar
Wainwright PJ, Trevorrow A, Yu Y et al (1994) Modifying the performance of concrete made with coarse and fine recycled concrete aggregates. Paper presented at the 3rd International RILEM symposium on demolition and reuse of concrete and masonry, Odense, Denmark, 24–27 Oct 1993
Google Scholar
Wong EOW, Yip RCP (2002) Balance theory for recycling of construction and demolition wastes. Adv Build Technol 2:1431–1438
CrossRef
Google Scholar
Xu Y, Wong YL, Poon CS et al (2001) Impact of high temperature on PFA concrete. Cem Concr Res 31:1065–1073
CAS
CrossRef
Google Scholar
Yalcm N, Sevinc V (2000) Utilisation of bauxite waste in ceramic glazes. Ceram Int 26:485–493
CrossRef
Google Scholar
Yang J, Liu W, Zhang L et al (2009) Preparation of load-bearing building materials from autoclaved phosphogypsum. Constr Build Mater 23(2):687–693
CrossRef
Google Scholar
Yang H-S, Kim D-J, Lee Y-K et al (2004) Possibility of using waste tire composites reinforced with rice straw as construction materials. Bioresour Technol 95(1):61–65
CAS
CrossRef
Google Scholar
Yeginobali A, Sovolev KG, Sovoleva SV et al (1997) Thermal resistance of blast furnace slag high strength concrete cement. Paper presented at the 1st International symposium on mineral admixtures in cement, Istanbul, Turkey, 6–9 Nov 1997
Google Scholar