Skip to main content

Recycling of Wastes into Construction Materials

Part of the Environmental Footprints and Eco-design of Products and Processes book series (EFEPP)

Abstract

Construction activity generates a large amount of waste, causing environmental and economic impacts due to waste elimination without recycling or reusing these materials. In this research, the incorporation of wastes from different sectors (biomass, power plants, construction and demolition process) in concrete with good fire resistance is studied. The chemical composition and grading curve of these wastes are determined. Fire resistance blocks are manufactured with a high percentage of waste in their composition. The new materials are then subjected to several tests in order to analyse their fire resistance, mechanical properties, thermal conductivity, leaching, and radioactivity. A new façade solution is developed by changing traditional materials for some of the new recycled materials, and their technical features are compared. All four wastes studied decreased the density and mechanical strength of a 28-day-old block, and a higher water ratio is needed for block preparation. On the other hand, the blocks’ fire resistance increased, decreasing their thermal conductivity. The properties of the new materials validate their possible usage for nonstructural applications such as blocks or prefabricated concrete panels for façades and inside partitioning, showing good mechanical and thermal performance. Their use does not represent a significant risk to the environment.

Keywords

  • Fly ash
  • Bottom ash
  • Recycled aggregates
  • Construction and demolition waste
  • Fire resistance
  • Thermal conductivity
  • Sound absorption
  • Leaching
  • Radioactivity

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-287-643-0_3
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-981-287-643-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Agamuthu P (2008) Challenges in sustainable management of construction and demolition waste. Waste Manage Res 26(6):491–492

    CAS  CrossRef  Google Scholar 

  • Alba MD, Marrero M, Leiva C et al (2012) Empleo de paneles compuestos por subproductos de centrales térmicas en fachadas trasdosadas (Façade solutions using panels made of power plant byproducts). Inf Constr 64:179–190

    CrossRef  Google Scholar 

  • Andrade LB, Rocha JC, Cheriaf M (2007) Evaluation of concrete incorporating bottom ash as a natural aggregates replacement. Waste Manage 27:1190–1199

    CAS  CrossRef  Google Scholar 

  • ASTM C127-12 (2012) Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM C348-14 (2014) Standard test method for flexural strength of hydraulic-cement mortars. ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM D3682-13 (2013) Standard test method for major and minor elements in combustion residues from coal utilization processes. ASTM International, West Conshohocken, PA

    Google Scholar 

  • ASTM E761-92 (2011) Standard test method for compressive strength of sprayed fire-resistive material applied to structural members. ASTM International, West Conshohocken, PA

    Google Scholar 

  • Babu KG, Bao SN (1996) Efficiency of fly ash in concrete with age. Cem Concr Res 26:465–474

    CAS  CrossRef  Google Scholar 

  • Bhattacharyya JK, Shekdar AV, Gaikwad SA (2004) Recyclability of some major industrial solid wastes. J Indian Assoc Environ Manage 31:71–75

    CAS  Google Scholar 

  • Bijen J, Selts RV (1993) Cement equivalence factors for the fly ashes. Cem Concr Res 23:1029–1039

    CAS  CrossRef  Google Scholar 

  • Bilodeau A, Malhorta VM (2000) High volume fly ash system: concrete solution for sustainable development. ACI Mater J 97(1):41–49

    CAS  Google Scholar 

  • BS 8500-2 (2006) Concrete. Complementary British Standard to BS EN 206-1. Part 2: Specification for constituent materials and concrete

    Google Scholar 

  • Central Pollution Control Board (CPCB) (2005) Available via MOEF India home page. http://cpcb.nic.in/. Accessed 18 Mar 2015

  • Cheng TW, Chiu JP (2003) Fire-resistant geopolymer produced by granulated blast furnace slag. Miner Eng 16(3):205–210

    CAS  CrossRef  Google Scholar 

  • Corinaldesi V, Moriconi G (2010) Recycling of rubble from building demolition for low-shrinkage concretes. Waste Manage 30(4):655–659

    Google Scholar 

  • Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste

    Google Scholar 

  • De Juan MS, Alaejos P (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater 23:872–877

    CrossRef  Google Scholar 

  • Decree on Soil Quality (2007) Decree no. 469 of 2007 containing rules relative to quality of soil. Besluit van 22 November 2007, houdende regels inzake de kwaliteit van de bodem (Besluit bodemkwaliteit). p. 137, Staatsblad van het Koninkrijk der Nederlanden, The Hague

    Google Scholar 

  • Demirboga R (2003) Thermo-mechanical properties of sand and high volume mineral admixtures. Energy Build 35(5):435–439

    CrossRef  Google Scholar 

  • Demirboga R, Gül R (2003) Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures. Energy Build 35:1155–1159

    CrossRef  Google Scholar 

  • Demirboga R, Türkmen I, Burhan M (2007) Thermo-mechanical properties of concrete containing high-volume mineral admixtures. Build Environ 42(1):349–354

    CrossRef  Google Scholar 

  • DIN 4226-100 (2002) Aggregates for concrete and mortar—Part 100: Recycled aggregates

    Google Scholar 

  • Directive 2003/33/EC of the European Parliament and of the Council of 26 May 2003 on the approximation of the laws, regulations and administrative provisions of the Member States relating to the advertising and sponsorship of tobacco products

    Google Scholar 

  • EN 12457-4 (2003) Characterization of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction)

    Google Scholar 

  • EN 12859 (2012) Gypsum blocks—definitions, requirements and test methods

    Google Scholar 

  • EN 1363-1 (2000) Fire resistance tests. Part 1: General requirements

    Google Scholar 

  • EN 196-3 (2005) Methods of testing cement—Part 3: Determination of setting times and soundness

    Google Scholar 

  • EN 197-1 (2011) Cement. Part 1: Composition, specifications and conformity criteria for common cements

    Google Scholar 

  • EN 450-1 (2013) Fly ash for concrete. Part 1: Definitions, specifications and conformity criteria

    Google Scholar 

  • EN 933-1 (2012) Tests for geometrical properties of aggregates—Part 1: Determination of particle size distribution—Sieving method

    Google Scholar 

  • EN 993-15 (2005) Methods of test for dense shaped refractory products—Determination of thermal conductivity by the hot-wire (parallel) method

    Google Scholar 

  • Espejo Escudero JF (2009) Aislamiento y reciclado de subproductos de la generación de energía y de residuos de demolición como elementos constructivos de separación. BS thesis, University of Seville

    Google Scholar 

  • Etxeberria M, Vázquez E, Marí A et al (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem Concr Res 37:735–742

    CAS  CrossRef  Google Scholar 

  • European Commission (1999) Radiation protection 112. Radiological protection principles concerning the natural radioactivity of building materials. Directorate-General, environment, nuclear safety and civil protection

    Google Scholar 

  • Evangelista L, De Brito J (2007) Mechanical behavior of concrete made with fine recycled concrete aggregates. Cem Concr Compos 29:397–401

    CAS  CrossRef  Google Scholar 

  • García Arenas C, Marrero M, Leiva C et al (2011) High fire resistance in blocks containing coal combustion fly ashes and bottom ash. Waste Manage 31:1783–1789

    CrossRef  Google Scholar 

  • Garg M, Singh M, Kumar R (1996) Some aspects of the durability of a phosphogypsum-lime-fly ash binder. Constr Build Mater 10(4):273–279

    CrossRef  Google Scholar 

  • Gomes CFS, Nunes KRA, Xavier LH et al (2008) Multicriteria decision making applied to waste recycling in Brazil. Omega 36:395–404

    CrossRef  Google Scholar 

  • González A, Navia R, Moreno N (2009) Fly ashes from coal and petroleum coke combustion: current and innovative potential applications. Waste Manage Res 27:976–987

    CrossRef  Google Scholar 

  • González-Madariaga FJ, Lloveras-Macia J (2008) Mezclas de residuos de poliestireno expandido (EPS) conglomerados con yeso o escayola para su uso en la construcción (Mixtures of wastes from expanded polystyrene (EPS) conglomerated with gypsum or plaster for its use in construction). Inf Constr 60:35–43

    CrossRef  Google Scholar 

  • Gupta TN (ed) (1998) Building materials in India: 50 years, a commemorative volume. Building Materials Technology Promotion Council Government of India, New Delhi

    Google Scholar 

  • Hernández-Olivares F, Barluenga G (2004) Fire performance of recycled rubber-filled high-strength concrete. Cem Concr Res 34(1):109–117

    CrossRef  Google Scholar 

  • Juric B, Hanzic L, Ilic R et al (2006) Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Manage 26:1436–1442

    CAS  CrossRef  Google Scholar 

  • Kodur VKR, Sultan MA (2003) Effect of temperature on thermal properties of high-strength concrete. J Mater Civil Eng 15(2):101–107

    CAS  CrossRef  Google Scholar 

  • Kumar S (2002) A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development. Constr Build Mater 16(8):519–525

    CrossRef  Google Scholar 

  • Kumar S (2003) Fly ash-lime-phosphogympsum hollow blocks for walls and partitions. Build Environ 38(2):291–295

    CrossRef  Google Scholar 

  • Lam L, Wong YL, Poon CS (1998) Effect of fly ash and silica fume on compressive and fracture behaviors of concrete. Cem Concr Res 28(2):271–283

    CAS  CrossRef  Google Scholar 

  • Lee HK, Kim HK, Hwang EA (2010) Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete. Waste Manage 30:274–284

    CAS  CrossRef  Google Scholar 

  • Leiva C (2006) Desarrollo y especificaciones técnicas de productos ignífugos fabricados a partir de residuos industriales, para su uso como elementos constructivos de separación (Development and technical specifications of fire resistant products made of industrial waste for its use as partition constructive elements). Ph.D thesis, University of Seville

    Google Scholar 

  • Leiva C, Vilches LF, Fernández-Pereira C et al (2005) Influence of the type of ash on the fire resistance characteristics of ash–enriched mortars. Fuel 84:1433–1439

    CAS  CrossRef  Google Scholar 

  • Leiva C, Vilches LF, Vale J et al (2009) Fire resistance of biomass ash panels used for internal partitions in buildings. Fire Safety J 44(4):622–628

    CAS  CrossRef  Google Scholar 

  • Leiva C, García Arenas C, Vilches LF et al (2010) Use of FGD gypsum in fire resistant panels. Waste Manage 30:1123–1129

    CAS  CrossRef  Google Scholar 

  • Leiva C, Solís-Guzmán J, Marrero M et al (2013) Recycled blocks with improved sound and fire insulation containing construction and demolition waste. Waste Manage 33(3):663–671

    CrossRef  Google Scholar 

  • Levy SM, Helene P (2004) Durability of recycled aggregates concrete: a safe way to sustainable development. Cem Concr Res 34:1975–1980

    CAS  CrossRef  Google Scholar 

  • Lin KL, Wu HH, Shie JL et al (2010) Recycling waste brick from construction and demolition of buildings as pozzolanic materials. Waste Manage Res 28(7):653–659

    Google Scholar 

  • Marrero M, Martínez-Escobar L, Mercader MP et al (2013) Minimización del impacto ambiental en la ejecución de fachadas mediante el empleo de materiales reciclados (Environmental impact minimization of building façades by means of recycled material usage). Inf Constr 65:89–97

    CrossRef  Google Scholar 

  • Martín-Morales M, Zamorano M, Ruiz-Moyano A et al (2011) Characterization of recycled aggregates construction and demolition waste for concrete production following the Spanish Structural Concrete Code EHE-08. Constr Build Mater 25:742–748

    Google Scholar 

  • Mercader MP, Marrero M, Solís-Guzmán J et al (2010) Cuantificación de los recursos materiales consumidos en la ejecución de la cimentación (Quantification of material resources consumed during concrete slab construction). Inf Constr 62:125–132

    CrossRef  Google Scholar 

  • Merlet JD, Pimienta P (1994) Mechanical and physico-chemical properties of concrete produced with coarse and fine recycled concrete aggregates. Paper presented at the 3rd International RILEM Symposium on Demolition and Reuse of Concrete and Masonry, Odense, Denmark, 24–27 Oct 1993

    Google Scholar 

  • Morabito P (1989) Measurement of the thermal properties of different concretes. High Temp-High Pressures 21:51–59

    CAS  Google Scholar 

  • NEN 7345 (1995) Leaching characteristics of solid earthy and stony building and waste materials—Leaching tests—Determination of the leaching of inorganic components from buildings and monolitic waste materials with the diffusion test

    Google Scholar 

  • Oikonomou ND (2005) Recycled concrete aggregates. Cem Concr Compos 27:315–318

    CAS  CrossRef  Google Scholar 

  • Order on Re-use of Slag (1996) Generalitat de Catalunya

    Google Scholar 

  • Order on Re-use of Slag (2003) Decreto 34/2003. Comunidad Autónoma del País Vasco

    Google Scholar 

  • Osmani M, Glass J, Price ADF (2008) Architects’ perspectives on construction waste reduction by design. Waste Manage 28:1147–1158

    CAS  CrossRef  Google Scholar 

  • Özkan O, Yüzsel I, Muratoglu Ö (2007) Strength properties of concrete incorporating coal bottom ash and granulated furnace slag. Waste Manage 27:161–167

    CrossRef  Google Scholar 

  • Papadakis VG (1999) Effect of fly ash on Portland cement systems: Part I. Low-calcium fly ash. Cem Concr Res 29(11):1727–1736

    CAS  CrossRef  Google Scholar 

  • Pérez Arnal I (2008) Ecoproductos para la arquitectura y el diseño. AxE - Arquitectura y Entorno S.L., Barcelona

    Google Scholar 

  • Poon CS, Kou SC, Lam L (2002) Use of recycled aggregates in molded concrete bricks and blocks. Constr Build Mater 16:281–289

    CrossRef  Google Scholar 

  • Pressler JW (1984) Chemistry and technology of gypsum. ASTM Special Technical Publication, Atlanta, pp 105–115

    CrossRef  Google Scholar 

  • Rahal K (2007) Mechanical properties of concrete with recycled coarse aggregate. Build Environ 42:407–415

    CrossRef  Google Scholar 

  • RILEM (International union of testing and research laboratories for materials and structures) (1994) Specifications for concrete with recycled aggregates. Mater Struct 27:557–559

    CrossRef  Google Scholar 

  • Rolón JC, Nieves D, Huete R et al (2007) Caracterización del hormigón elaborado con áridos reciclados producto de la demolición de estructuras de hormigón (Characterization of concrete made with recycled aggregate from concrete demolition waste). Mater Construcc 57:5–15

    Google Scholar 

  • Saxena M, Mishra CR (2004) Processing of red mud for development of wood substitutes. Book on recycling, waste treatment and clean technology, Vol. 1. TMS Mineral, Metals and Materials, Spain, pp 371–380

    Google Scholar 

  • Sglavo VM, Stefano M, Alexia C et al (2000) Bauxite ‘red mud’ in the ceramic industry. Part 2: production of clay-based ceramics. J Eur Ceram Soc 20:245–252

    CAS  CrossRef  Google Scholar 

  • Shim Y-S, Rhee S-W, Lee W-K (2005) Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan. Waste Manage 25:473–480

    CAS  CrossRef  Google Scholar 

  • Singh M, Garg M (1997) Durability of cementitious binder derived from industrial wastes. Mater Struct 30:607–612

    CAS  CrossRef  Google Scholar 

  • Singh M, Verma CL, Garg M et al (2003) Processing of Phosphogypsum for value added building materials. In: Recycling and reuse of waste materials: proceedings of the international symposium on advances in waste management and recycling. Dundee, pp 165–172

    Google Scholar 

  • Spain ME (Ministry of the environment) (2001) Plan Nacional de Residuos de Construcción y Demolición 2001–2006 (National plan for C&D waste 2001–2006). Madrid

    Google Scholar 

  • Spain MH (Ministry of housing) (2009) Código Técnico de la Edificación (Technical code of construction). Madrid

    Google Scholar 

  • Spain MP (Ministry of the presidency) (2008) Real Decreto 105/2008, de 1 de Febrero, por el que se Regula la Producción y Gestión de los Residuos de Construcción y Demolición (Royal Decree 105/2008, February 1, which regulates the production and management of construction and demolition waste). Madrid

    Google Scholar 

  • Spain MPW (Ministry of public works), (2008) Instrucción del hormigón estructural (EHE-08), BOE, nº203 Suplemento

    Google Scholar 

  • Tabsh SW, Abdelfatah AS (2009) Influence of recycled concrete aggregates on strength properties of concrete. Constr Build Mater 23:1163–1167

    CrossRef  Google Scholar 

  • Thomas G (2002) Thermal properties of gypsum plasterboard at high temperatures. Fire Mater 26:37–45

    CAS  CrossRef  Google Scholar 

  • UNE 136001 EX (1995) Prefabricated clay and gypsum panels. Definitions and specifications

    Google Scholar 

  • Vegas I, Azkarate I, Juarrero A et al (2009) Design and performance of masonry mortars made with recycled concrete aggregates. Mater Constr 59(295):5–18

    Google Scholar 

  • Vilches LF, Leiva C, Vale J et al (2005a) Insulating capacity of fly ash pastes used for passive protection against fire. Cem Concr Compos 27:776–781

    CAS  CrossRef  Google Scholar 

  • Vilches LF, Leiva C, Olivares J et al (2005b) Coal fly ash-containing sprayed mortar for passive fire protection of steel sections. Mater Construcc 55:25–37

    CAS  CrossRef  Google Scholar 

  • Vilches LF, Leiva C, Vale J et al (2007) Fire resistance characteristics of plates containing a high biomass-ash proportion. Ind Eng Chem Res 46:4824–4829

    CAS  CrossRef  Google Scholar 

  • Wainwright PJ, Trevorrow A, Yu Y et al (1994) Modifying the performance of concrete made with coarse and fine recycled concrete aggregates. Paper presented at the 3rd International RILEM symposium on demolition and reuse of concrete and masonry, Odense, Denmark, 24–27 Oct 1993

    Google Scholar 

  • Wong EOW, Yip RCP (2002) Balance theory for recycling of construction and demolition wastes. Adv Build Technol 2:1431–1438

    CrossRef  Google Scholar 

  • Xu Y, Wong YL, Poon CS et al (2001) Impact of high temperature on PFA concrete. Cem Concr Res 31:1065–1073

    CAS  CrossRef  Google Scholar 

  • Yalcm N, Sevinc V (2000) Utilisation of bauxite waste in ceramic glazes. Ceram Int 26:485–493

    CrossRef  Google Scholar 

  • Yang J, Liu W, Zhang L et al (2009) Preparation of load-bearing building materials from autoclaved phosphogypsum. Constr Build Mater 23(2):687–693

    CrossRef  Google Scholar 

  • Yang H-S, Kim D-J, Lee Y-K et al (2004) Possibility of using waste tire composites reinforced with rice straw as construction materials. Bioresour Technol 95(1):61–65

    CAS  CrossRef  Google Scholar 

  • Yeginobali A, Sovolev KG, Sovoleva SV et al (1997) Thermal resistance of blast furnace slag high strength concrete cement. Paper presented at the 1st International symposium on mineral admixtures in cement, Istanbul, Turkey, 6–9 Nov 1997

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support for this research by the Junta de Andalucía, Consejería de Economía, Innovación, Ciencia y Empleo, and the PANEL project (P12-TEP-1988).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Solís-Guzmán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Solís-Guzmán, J. et al. (2015). Recycling of Wastes into Construction Materials. In: Muthu, S. (eds) Environmental Implications of Recycling and Recycled Products. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-287-643-0_3

Download citation