Abstract
Photoacoustic (PA) imaging is a promising biomedical imaging modality that has emerged over the last decade. In this method, imaging is performed using pulsed far-red or near-infrared light. This light while scattering through soft tissue is absorbed at specific locations by certain molecules such as hemoglobin in blood. The absorbed energy is converted into heat; the subsequent thermoelastic expansion causes ultrasound (US) to be produced from the absorbing region. The US is measured at the surface of tissue using US detectors and the acquired signals are used to reconstruct the location and spatial details of the absorber. PA imaging thus combines the advantages of optical and US imaging, providing excellent optical spectroscopic contrast with ultrasonic resolution. While US imaging utilizes acoustic impedance mismatches in tissue for its signals to provide structural details, PA imaging extracts functional information based on optical absorption by chromophores, predominantly blood, and often exogenous contrast agents. Since PA imaging involves US detection, it can be seamlessly implemented in a commercially available US scanner to perform dual mode PA/US imaging, which is a promising translational medical diagnostic technique. These dual mode systems providing complementary contrast hold potential for myriad of clinical applications. Handheld dual mode US/PA probes use reflection mode imaging geometry, where light irradiation is done from the same side where PA signals are detected. These epi-style handheld probe-based imaging setup delivers flexibility in imaging different body parts using the same probe. This review details the fundamentals of PA/US imaging and also depicts the importance of handheld probe-based dual mode PA/US systems. Particular attention is paid to the engineering aspects of systems developed by different groups and range of clinical applications demonstrated by them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002)
R. Weissleder, M.J. Pittet, Imaging in the era of molecular oncology. Nature 452, 580–589 (2008)
R. Nachabe, B.H. Hendriks, M. Van Der Voort, A.E. Desjardins, H.J. Sterenborg, Estimation of biological chromophores using diffuse optical spectroscopy: Benefit of extending the uv-vis wavelength range to include 1000 to 1600 nm. Biomed. Opt. Express 1, 1432–1442 (2010)
V. Baeriswyl, G. Christofori, The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 19, 329–337 (2009)
P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)
N. Weidner, J.P. Semple, W.R. Welch, J. Folkman, Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8 (1991)
P. Beard, Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011)
L.V. Wang, Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quantum Electron. 14, 171–179 (2008)
S. Ricci, L. Moro, R.A. Incalzi, Ultrasound imaging of the sural nerve: ultrasound anatomy and rationale for investigation. Eur. J. Vasc. Endovasc. Surg. 39, 636–641 (2010)
J. Shalhoub, D.R.J. Owen, T. Gauthier, C. Monaco, E.L.S. Leen, A.H. Davies, The use of contrast enhanced ultrasound in carotid arterial disease. Eur. J. Vasc. Endovasc. Surg. 39, 381–387 (2010)
T. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Elsevier Academic, New York, NY, 2004)
M. Tanter, M. Fink, Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 102–119 (2014)
W. Xia, D. Piras, W. Steenbergen, T.G. van Leeuwen, S. Manohar, Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives. IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010)
J.J. Xia, C.W. Wei, T.M. Nguyen, B. Arnal, I. Pelivanov, M. O’Donnell, Clinically translatable integrated ultrasound and photoacoustic imaging system. Proc. SPIE 8943, 894310 (2014)
Y. Sun, H. Jiang, B.E. O’Neill, Photoacoustic imaging: an emerging optical modality in diagnostic and theranostic medicine. J. Biosens. Bioelectron. 2, 108 (2011)
F.A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic Press, London, 1990)
S. Manohar, S.E. Vaartjes, J.C. van Hespen, J.M. Klaase, F.M. van den Engh, W. Steenbergen, T.G. van Leeuwen, Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt. Express 15, 12277–12285 (2007)
A.G. Bell, On the production and reproduction of sound by light. Am. J. Sci. 20, 305–324 (1880)
R.A. Kruger, C. Appeldoorn, Photoacoustic ultrasound (PAUS)—reconstruction tomography. Med. Phys. 22, 1605–1609 (1995)
A.A. Oraevsky, V.A. Andreev, A.A. Karabutov, R.D. Fleming, Z. Gatalica, H. Singh, R. O. Esenaliev, Laser optoacoustic imaging of breast: detection of cancer angiogenesis. Proc.SPIE 3597, 352–363 (1999)
P. Beard, Photoacoustic imaging of blood vessel equivalent phantoms. Proc. SPIE 4618, 55 (2002)
B.T. Cox, P.C. Beard, Fast calculation of pulsed photoacoustic fields in fluids using k-space methods. J. Acoust. Soc. Am. 117, 3616–3627 (2005)
B.T. Cox, J.G. Laufer, P.C. Beard, The challenges for quantitative photoacoustic imaging. Proc. SPIE 7177, 717713 (2009)
P. Kuchment, L. Kunyansky, A survey in mathematics for industry Mathematics of thermoacoustic tomography. Eur. J. Appl. Math. 19, 191–224 (2008)
B.E. Treeby, B.T. Cox, k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15, 021314 (2010)
C. Kim, T.N. Erpelding, L. Jankovic, M.D. Pashley, L.H.V. Wang, Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed. Opt. Express 1, 278–284 (2010)
J.J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, M. Frenz, Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans. Med. Imaging 24, 436–440 (2005)
C. Kim, T.N. Erpelding, L. Jankovic, L.V. Wang, Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Philos. Trans. R. Soc. Publishing Ser. A: Math. Phys. Eng. Sci. 369, 4644–4650 (2011)
R.J. Zemp, L.A. Song, R. Bitton, K.K. Shung, L.H.V. Wang, Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer. Opt. Express 16, 7915–7928 (2008)
R.G.M. Kolkman, P.J. Brands, W. Steenbergen, T.G. van Leeuwen, Real-time photoacoustic & ultrasound imaging of human vasculature. Proc. SPIE 7177, 717704 (2009)
S. Park, J. Shah, S.R. Aglyamov, A.B. Karpiouk, S. Mallidi, A. Gopal, H. Moon, X.J. Zhang, W.G. Scott, S.Y. Emelianov, Integrated system for ultrasonic, photoacoustic and elasticity imaging. Proc. SPIE 6147, 61470H (2006)
J. Jose, R.G. Willemink, S. Resink, D. Piras, J.C. van Hespen, C.H. Slump, W. Steenbergen, T.G. van Leeuwen, S. Manohar, Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption. Opt. Express 19, 2093–2104 (2011)
X.D. Wang, J.B. Fowlkes, J.M. Cannata, C.H. Hu, P.L. Carson, Photoacoustic imaging with a commercial ultrasound system and a custom probe. Ultrasound Med. Biol. 37, 484–492 (2011)
K.P. Kostli, D. Frauchiger, J.J. Niederhauser, G. Paltauf, H.P. Weber, M. Frenz, Optoacoustic imaging using a three-dimensional reconstruction algorithm. IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001)
R.G.M. Kolkman, P.J. Brands, W. Steenbergen, T.G. van Leeuwen, Real-time in vivo photoacoustic and ultrasound imaging. J. Biomed. Opt. 13, 050510 (2008)
K. Daoudi, P.J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, W. Steenbergen, Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging. Opt. Express 22, 26365–26374 (2014)
C. Haisch, K. Eilert-Zell, M.M. Vogel, P. Menzenbach, R. Niessner, Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations. Anal. Bioanal. Chem. 397, 1503–1510 (2010)
M.P. Fronheiser, S.A. Ermilov, H.P. Brecht, A. Conjusteau, R. Su, K. Mehta, A.A. Oraevsky, Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. J. Biomed. Opt. 15, 021305 (2010)
L.G. Montilla, R. Olafsson, D.R. Bauer, R.S. Witte, Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays. Phys. Med. Biol. 58, N1–N12 (2013)
A. Buehler, M. Kacprowicz, A. Taruttis, V. Ntziachristos, Real-time handheld multispectral optoacoustic imaging. Opt. Lett. 38, 1404–1406 (2013)
A. Dima, V. Ntziachristos, Non-invasive carotid imaging using optoacoustic tomography. Opt. Express 20, 25044–25057 (2012)
X.L. Dean-Ben, D. Razansky, Functional optoacoustic human angiography with handheld video rate three dimensional scanner. Photoacoustics 1, 68–73 (2013)
X.L. Dean-Ben, D. Razansky, Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Nat. Light: Sci. Appl. 3, e137 (2014)
A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, F.S. Foster, Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 888–897 (2013)
G.C. Langhout, D.J. Grootendorst, O.E. Nieweg, M.W. Wouters, J.A. van der Hage, J. Jose, H. van Boven, W. Steenbergen, S. Manohar, T.J. Ruers, Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging. Int. J. Biomed. Imaging 2014, 163652 (2014)
J. Yuan, G. Xu, Y. Yu, Y. Zhou, P.L. Carson, X.D. Wang, X.J. Liu, Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization. J. Biomed. Opt. 18, 086001 (2013)
G. Xu, J.R. Rajian, G. Girish, M.J. Kaplan, J.B. Fowlkes, P.L. Carson, X.D. Wang, Photoacoustic and ultrasound dual-modality imaging of human peripheral joints. J. Biomed. Opt. 18, 010502 (2013)
Y. Cho, C.C. Chang, M. Jeon, C. Kim, L.H.V. Wang, J. Zou, A handheld optical fiber parallel acoustic delay line (PADL) probe for photoacoustic tomography. Proc. SPIE 8943, 89432W (2014)
Y. Cho, C.C. Chang, J. Yu, M. Jeon, C. Kim, L.V. Wang, J. Zou, Handheld photoacoustic tomography probe built using optical-fiber parallel acoustic delay lines. J. Biomed. Opt. 19, 086007 (2014)
J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, S.Y. Emelianov, Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt. 13, 034024 (2008)
H.X. Ke, S. Tai, L.H.V. Wang, Photoacoustic thermography of tissue. J. Biomed. Opt. 19, 026003 (2014)
A.A. Karabutov, E.V. Savateeva, N.B. Podymova, A.A. Oraevsky, Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. J. Appl. Phys. 87, 2003–2014 (2000)
W. Xia, D. Piras, J.C. van Hespen, S. van Veldhoven, C. Prins, T.G. van Leeuwen, W. Steenbergen, S. Manohar, An optimized ultrasound detector for photoacoustic breast tomography. Med. Phys. 40, 032901 (2013)
S. Vaithilingam, T.J. Ma, Y. Furukawa, I.O. Wygant, X.F. Zhuang, A. De la Zerda, O. Oralkan, A. Kamaya, S.S. Gambhir, R.B. Jeffrey, B.T. Khuri-Yakub, Three-Dimensional Photoacoustic Imaging Using a Two-Dimensional CMUT Array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2411–2419 (2009)
R. Bouchard, O. Sahin, S. Emelianov, Ultrasound-guided photoacoustic imaging: current state and future development. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 450–466 (2014)
X.L. Dean-Ben, E. Bay, D. Razansky, Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data. Nat. Sci. Rep. 4, 5878 (2014)
Acknowledgments
M. K. A. S. and W. S. are funded by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 318067. S. M. is funded by the Netherlands Organization for health research and development (ZonMw) under the program New Medical Devices for Affordable Health.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media Singapore
About this chapter
Cite this chapter
Kuniyil Ajith Singh, M., Steenbergen, W., Manohar, S. (2016). Handheld Probe-Based Dual Mode Ultrasound/Photoacoustics for Biomedical Imaging. In: Olivo, M., Dinish, U. (eds) Frontiers in Biophotonics for Translational Medicine. Progress in Optical Science and Photonics, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-287-627-0_7
Download citation
DOI: https://doi.org/10.1007/978-981-287-627-0_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-287-626-3
Online ISBN: 978-981-287-627-0
eBook Packages: EngineeringEngineering (R0)