Skip to main content

Handheld Probe-Based Dual Mode Ultrasound/Photoacoustics for Biomedical Imaging

  • Chapter
  • First Online:
Frontiers in Biophotonics for Translational Medicine

Abstract

Photoacoustic (PA) imaging is a promising biomedical imaging modality that has emerged over the last decade. In this method, imaging is performed using pulsed far-red or near-infrared light. This light while scattering through soft tissue is absorbed at specific locations by certain molecules such as hemoglobin in blood. The absorbed energy is converted into heat; the subsequent thermoelastic expansion causes ultrasound (US) to be produced from the absorbing region. The US is measured at the surface of tissue using US detectors and the acquired signals are used to reconstruct the location and spatial details of the absorber. PA imaging thus combines the advantages of optical and US imaging, providing excellent optical spectroscopic contrast with ultrasonic resolution. While US imaging utilizes acoustic impedance mismatches in tissue for its signals to provide structural details, PA imaging extracts functional information based on optical absorption by chromophores, predominantly blood, and often exogenous contrast agents. Since PA imaging involves US detection, it can be seamlessly implemented in a commercially available US scanner to perform dual mode PA/US imaging, which is a promising translational medical diagnostic technique. These dual mode systems providing complementary contrast hold potential for myriad of clinical applications. Handheld dual mode US/PA probes use reflection mode imaging geometry, where light irradiation is done from the same side where PA signals are detected. These epi-style handheld probe-based imaging setup delivers flexibility in imaging different body parts using the same probe. This review details the fundamentals of PA/US imaging and also depicts the importance of handheld probe-based dual mode PA/US systems. Particular attention is paid to the engineering aspects of systems developed by different groups and range of clinical applications demonstrated by them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  2. R. Weissleder, M.J. Pittet, Imaging in the era of molecular oncology. Nature 452, 580–589 (2008)

    Article  Google Scholar 

  3. R. Nachabe, B.H. Hendriks, M. Van Der Voort, A.E. Desjardins, H.J. Sterenborg, Estimation of biological chromophores using diffuse optical spectroscopy: Benefit of extending the uv-vis wavelength range to include 1000 to 1600 nm. Biomed. Opt. Express 1, 1432–1442 (2010)

    Article  Google Scholar 

  4. V. Baeriswyl, G. Christofori, The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 19, 329–337 (2009)

    Article  Google Scholar 

  5. P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)

    Article  Google Scholar 

  6. N. Weidner, J.P. Semple, W.R. Welch, J. Folkman, Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8 (1991)

    Article  Google Scholar 

  7. P. Beard, Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011)

    Article  Google Scholar 

  8. L.V. Wang, Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quantum Electron. 14, 171–179 (2008)

    Article  Google Scholar 

  9. S. Ricci, L. Moro, R.A. Incalzi, Ultrasound imaging of the sural nerve: ultrasound anatomy and rationale for investigation. Eur. J. Vasc. Endovasc. Surg. 39, 636–641 (2010)

    Article  Google Scholar 

  10. J. Shalhoub, D.R.J. Owen, T. Gauthier, C. Monaco, E.L.S. Leen, A.H. Davies, The use of contrast enhanced ultrasound in carotid arterial disease. Eur. J. Vasc. Endovasc. Surg. 39, 381–387 (2010)

    Article  Google Scholar 

  11. T. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Elsevier Academic, New York, NY, 2004)

    Google Scholar 

  12. M. Tanter, M. Fink, Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 102–119 (2014)

    Article  Google Scholar 

  13. W. Xia, D. Piras, W. Steenbergen, T.G. van Leeuwen, S. Manohar, Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives. IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010)

    Article  Google Scholar 

  14. J.J. Xia, C.W. Wei, T.M. Nguyen, B. Arnal, I. Pelivanov, M. O’Donnell, Clinically translatable integrated ultrasound and photoacoustic imaging system. Proc. SPIE 8943, 894310 (2014)

    Article  Google Scholar 

  15. Y. Sun, H. Jiang, B.E. O’Neill, Photoacoustic imaging: an emerging optical modality in diagnostic and theranostic medicine. J. Biosens. Bioelectron. 2, 108 (2011)

    Article  Google Scholar 

  16. F.A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic Press, London, 1990)

    Google Scholar 

  17. S. Manohar, S.E. Vaartjes, J.C. van Hespen, J.M. Klaase, F.M. van den Engh, W. Steenbergen, T.G. van Leeuwen, Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt. Express 15, 12277–12285 (2007)

    Article  Google Scholar 

  18. A.G. Bell, On the production and reproduction of sound by light. Am. J. Sci. 20, 305–324 (1880)

    Article  Google Scholar 

  19. R.A. Kruger, C. Appeldoorn, Photoacoustic ultrasound (PAUS)—reconstruction tomography. Med. Phys. 22, 1605–1609 (1995)

    Article  Google Scholar 

  20. A.A. Oraevsky, V.A. Andreev, A.A. Karabutov, R.D. Fleming, Z. Gatalica, H. Singh, R. O. Esenaliev, Laser optoacoustic imaging of breast: detection of cancer angiogenesis. Proc.SPIE 3597, 352–363 (1999)

    Google Scholar 

  21. P. Beard, Photoacoustic imaging of blood vessel equivalent phantoms. Proc. SPIE 4618, 55 (2002)

    Google Scholar 

  22. B.T. Cox, P.C. Beard, Fast calculation of pulsed photoacoustic fields in fluids using k-space methods. J. Acoust. Soc. Am. 117, 3616–3627 (2005)

    Article  Google Scholar 

  23. B.T. Cox, J.G. Laufer, P.C. Beard, The challenges for quantitative photoacoustic imaging. Proc. SPIE 7177, 717713 (2009)

    Article  Google Scholar 

  24. P. Kuchment, L. Kunyansky, A survey in mathematics for industry Mathematics of thermoacoustic tomography. Eur. J. Appl. Math. 19, 191–224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. B.E. Treeby, B.T. Cox, k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15, 021314 (2010)

    Article  Google Scholar 

  26. C. Kim, T.N. Erpelding, L. Jankovic, M.D. Pashley, L.H.V. Wang, Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed. Opt. Express 1, 278–284 (2010)

    Article  Google Scholar 

  27. J.J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, M. Frenz, Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans. Med. Imaging 24, 436–440 (2005)

    Article  Google Scholar 

  28. C. Kim, T.N. Erpelding, L. Jankovic, L.V. Wang, Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Philos. Trans. R. Soc. Publishing Ser. A: Math. Phys. Eng. Sci. 369, 4644–4650 (2011)

    Google Scholar 

  29. R.J. Zemp, L.A. Song, R. Bitton, K.K. Shung, L.H.V. Wang, Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer. Opt. Express 16, 7915–7928 (2008)

    Article  Google Scholar 

  30. R.G.M. Kolkman, P.J. Brands, W. Steenbergen, T.G. van Leeuwen, Real-time photoacoustic & ultrasound imaging of human vasculature. Proc. SPIE 7177, 717704 (2009)

    Article  Google Scholar 

  31. S. Park, J. Shah, S.R. Aglyamov, A.B. Karpiouk, S. Mallidi, A. Gopal, H. Moon, X.J. Zhang, W.G. Scott, S.Y. Emelianov, Integrated system for ultrasonic, photoacoustic and elasticity imaging. Proc. SPIE 6147, 61470H (2006)

    Article  Google Scholar 

  32. J. Jose, R.G. Willemink, S. Resink, D. Piras, J.C. van Hespen, C.H. Slump, W. Steenbergen, T.G. van Leeuwen, S. Manohar, Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption. Opt. Express 19, 2093–2104 (2011)

    Article  Google Scholar 

  33. X.D. Wang, J.B. Fowlkes, J.M. Cannata, C.H. Hu, P.L. Carson, Photoacoustic imaging with a commercial ultrasound system and a custom probe. Ultrasound Med. Biol. 37, 484–492 (2011)

    Article  Google Scholar 

  34. K.P. Kostli, D. Frauchiger, J.J. Niederhauser, G. Paltauf, H.P. Weber, M. Frenz, Optoacoustic imaging using a three-dimensional reconstruction algorithm. IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001)

    Article  Google Scholar 

  35. R.G.M. Kolkman, P.J. Brands, W. Steenbergen, T.G. van Leeuwen, Real-time in vivo photoacoustic and ultrasound imaging. J. Biomed. Opt. 13, 050510 (2008)

    Article  Google Scholar 

  36. K. Daoudi, P.J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, W. Steenbergen, Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging. Opt. Express 22, 26365–26374 (2014)

    Article  Google Scholar 

  37. C. Haisch, K. Eilert-Zell, M.M. Vogel, P. Menzenbach, R. Niessner, Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations. Anal. Bioanal. Chem. 397, 1503–1510 (2010)

    Article  Google Scholar 

  38. M.P. Fronheiser, S.A. Ermilov, H.P. Brecht, A. Conjusteau, R. Su, K. Mehta, A.A. Oraevsky, Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. J. Biomed. Opt. 15, 021305 (2010)

    Article  Google Scholar 

  39. L.G. Montilla, R. Olafsson, D.R. Bauer, R.S. Witte, Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays. Phys. Med. Biol. 58, N1–N12 (2013)

    Article  Google Scholar 

  40. A. Buehler, M. Kacprowicz, A. Taruttis, V. Ntziachristos, Real-time handheld multispectral optoacoustic imaging. Opt. Lett. 38, 1404–1406 (2013)

    Article  Google Scholar 

  41. A. Dima, V. Ntziachristos, Non-invasive carotid imaging using optoacoustic tomography. Opt. Express 20, 25044–25057 (2012)

    Article  Google Scholar 

  42. X.L. Dean-Ben, D. Razansky, Functional optoacoustic human angiography with handheld video rate three dimensional scanner. Photoacoustics 1, 68–73 (2013)

    Article  Google Scholar 

  43. X.L. Dean-Ben, D. Razansky, Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Nat. Light: Sci. Appl. 3, e137 (2014)

    Google Scholar 

  44. A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, F.S. Foster, Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 888–897 (2013)

    Article  Google Scholar 

  45. G.C. Langhout, D.J. Grootendorst, O.E. Nieweg, M.W. Wouters, J.A. van der Hage, J. Jose, H. van Boven, W. Steenbergen, S. Manohar, T.J. Ruers, Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging. Int. J. Biomed. Imaging 2014, 163652 (2014)

    Article  Google Scholar 

  46. J. Yuan, G. Xu, Y. Yu, Y. Zhou, P.L. Carson, X.D. Wang, X.J. Liu, Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization. J. Biomed. Opt. 18, 086001 (2013)

    Article  Google Scholar 

  47. G. Xu, J.R. Rajian, G. Girish, M.J. Kaplan, J.B. Fowlkes, P.L. Carson, X.D. Wang, Photoacoustic and ultrasound dual-modality imaging of human peripheral joints. J. Biomed. Opt. 18, 010502 (2013)

    Article  Google Scholar 

  48. Y. Cho, C.C. Chang, M. Jeon, C. Kim, L.H.V. Wang, J. Zou, A handheld optical fiber parallel acoustic delay line (PADL) probe for photoacoustic tomography. Proc. SPIE 8943, 89432W (2014)

    Article  Google Scholar 

  49. Y. Cho, C.C. Chang, J. Yu, M. Jeon, C. Kim, L.V. Wang, J. Zou, Handheld photoacoustic tomography probe built using optical-fiber parallel acoustic delay lines. J. Biomed. Opt. 19, 086007 (2014)

    Article  Google Scholar 

  50. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, S.Y. Emelianov, Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt. 13, 034024 (2008)

    Article  Google Scholar 

  51. H.X. Ke, S. Tai, L.H.V. Wang, Photoacoustic thermography of tissue. J. Biomed. Opt. 19, 026003 (2014)

    Article  Google Scholar 

  52. A.A. Karabutov, E.V. Savateeva, N.B. Podymova, A.A. Oraevsky, Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. J. Appl. Phys. 87, 2003–2014 (2000)

    Article  Google Scholar 

  53. W. Xia, D. Piras, J.C. van Hespen, S. van Veldhoven, C. Prins, T.G. van Leeuwen, W. Steenbergen, S. Manohar, An optimized ultrasound detector for photoacoustic breast tomography. Med. Phys. 40, 032901 (2013)

    Article  Google Scholar 

  54. S. Vaithilingam, T.J. Ma, Y. Furukawa, I.O. Wygant, X.F. Zhuang, A. De la Zerda, O. Oralkan, A. Kamaya, S.S. Gambhir, R.B. Jeffrey, B.T. Khuri-Yakub, Three-Dimensional Photoacoustic Imaging Using a Two-Dimensional CMUT Array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2411–2419 (2009)

    Article  Google Scholar 

  55. R. Bouchard, O. Sahin, S. Emelianov, Ultrasound-guided photoacoustic imaging: current state and future development. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 450–466 (2014)

    Article  Google Scholar 

  56. X.L. Dean-Ben, E. Bay, D. Razansky, Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data. Nat. Sci. Rep. 4, 5878 (2014)

    Google Scholar 

Download references

Acknowledgments

M. K. A. S. and W. S. are funded by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 318067. S. M. is funded by the Netherlands Organization for health research and development (ZonMw) under the program New Medical Devices for Affordable Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mithun Kuniyil Ajith Singh or Srirang Manohar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kuniyil Ajith Singh, M., Steenbergen, W., Manohar, S. (2016). Handheld Probe-Based Dual Mode Ultrasound/Photoacoustics for Biomedical Imaging. In: Olivo, M., Dinish, U. (eds) Frontiers in Biophotonics for Translational Medicine. Progress in Optical Science and Photonics, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-287-627-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-627-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-626-3

  • Online ISBN: 978-981-287-627-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics