Advertisement

Handheld Probe-Based Dual Mode Ultrasound/Photoacoustics for Biomedical Imaging

  • Mithun Kuniyil Ajith Singh
  • Wiendelt Steenbergen
  • Srirang Manohar
Part of the Progress in Optical Science and Photonics book series (POSP, volume 3)

Abstract

Photoacoustic (PA) imaging is a promising biomedical imaging modality that has emerged over the last decade. In this method, imaging is performed using pulsed far-red or near-infrared light. This light while scattering through soft tissue is absorbed at specific locations by certain molecules such as hemoglobin in blood. The absorbed energy is converted into heat; the subsequent thermoelastic expansion causes ultrasound (US) to be produced from the absorbing region. The US is measured at the surface of tissue using US detectors and the acquired signals are used to reconstruct the location and spatial details of the absorber. PA imaging thus combines the advantages of optical and US imaging, providing excellent optical spectroscopic contrast with ultrasonic resolution. While US imaging utilizes acoustic impedance mismatches in tissue for its signals to provide structural details, PA imaging extracts functional information based on optical absorption by chromophores, predominantly blood, and often exogenous contrast agents. Since PA imaging involves US detection, it can be seamlessly implemented in a commercially available US scanner to perform dual mode PA/US imaging, which is a promising translational medical diagnostic technique. These dual mode systems providing complementary contrast hold potential for myriad of clinical applications. Handheld dual mode US/PA probes use reflection mode imaging geometry, where light irradiation is done from the same side where PA signals are detected. These epi-style handheld probe-based imaging setup delivers flexibility in imaging different body parts using the same probe. This review details the fundamentals of PA/US imaging and also depicts the importance of handheld probe-based dual mode PA/US systems. Particular attention is paid to the engineering aspects of systems developed by different groups and range of clinical applications demonstrated by them.

Keywords

Sentinel Lymph Node Methylene Blue Optical Parametric Oscillator Dual Modality Photothermal Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

M. K. A. S. and W. S. are funded by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 318067. S. M. is funded by the Netherlands Organization for health research and development (ZonMw) under the program New Medical Devices for Affordable Health.

References

  1. 1.
    M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002)Google Scholar
  2. 2.
    R. Weissleder, M.J. Pittet, Imaging in the era of molecular oncology. Nature 452, 580–589 (2008)CrossRefGoogle Scholar
  3. 3.
    R. Nachabe, B.H. Hendriks, M. Van Der Voort, A.E. Desjardins, H.J. Sterenborg, Estimation of biological chromophores using diffuse optical spectroscopy: Benefit of extending the uv-vis wavelength range to include 1000 to 1600 nm. Biomed. Opt. Express 1, 1432–1442 (2010)CrossRefGoogle Scholar
  4. 4.
    V. Baeriswyl, G. Christofori, The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 19, 329–337 (2009)CrossRefGoogle Scholar
  5. 5.
    P. Carmeliet, R.K. Jain, Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)CrossRefGoogle Scholar
  6. 6.
    N. Weidner, J.P. Semple, W.R. Welch, J. Folkman, Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8 (1991)CrossRefGoogle Scholar
  7. 7.
    P. Beard, Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011)CrossRefGoogle Scholar
  8. 8.
    L.V. Wang, Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quantum Electron. 14, 171–179 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Ricci, L. Moro, R.A. Incalzi, Ultrasound imaging of the sural nerve: ultrasound anatomy and rationale for investigation. Eur. J. Vasc. Endovasc. Surg. 39, 636–641 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Shalhoub, D.R.J. Owen, T. Gauthier, C. Monaco, E.L.S. Leen, A.H. Davies, The use of contrast enhanced ultrasound in carotid arterial disease. Eur. J. Vasc. Endovasc. Surg. 39, 381–387 (2010)CrossRefGoogle Scholar
  11. 11.
    T. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Elsevier Academic, New York, NY, 2004)Google Scholar
  12. 12.
    M. Tanter, M. Fink, Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 102–119 (2014)CrossRefGoogle Scholar
  13. 13.
    W. Xia, D. Piras, W. Steenbergen, T.G. van Leeuwen, S. Manohar, Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives. IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010)CrossRefGoogle Scholar
  14. 14.
    J.J. Xia, C.W. Wei, T.M. Nguyen, B. Arnal, I. Pelivanov, M. O’Donnell, Clinically translatable integrated ultrasound and photoacoustic imaging system. Proc. SPIE 8943, 894310 (2014)CrossRefGoogle Scholar
  15. 15.
    Y. Sun, H. Jiang, B.E. O’Neill, Photoacoustic imaging: an emerging optical modality in diagnostic and theranostic medicine. J. Biosens. Bioelectron. 2, 108 (2011)CrossRefGoogle Scholar
  16. 16.
    F.A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic Press, London, 1990)Google Scholar
  17. 17.
    S. Manohar, S.E. Vaartjes, J.C. van Hespen, J.M. Klaase, F.M. van den Engh, W. Steenbergen, T.G. van Leeuwen, Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt. Express 15, 12277–12285 (2007)CrossRefGoogle Scholar
  18. 18.
    A.G. Bell, On the production and reproduction of sound by light. Am. J. Sci. 20, 305–324 (1880)CrossRefGoogle Scholar
  19. 19.
    R.A. Kruger, C. Appeldoorn, Photoacoustic ultrasound (PAUS)—reconstruction tomography. Med. Phys. 22, 1605–1609 (1995)CrossRefGoogle Scholar
  20. 20.
    A.A. Oraevsky, V.A. Andreev, A.A. Karabutov, R.D. Fleming, Z. Gatalica, H. Singh, R. O. Esenaliev, Laser optoacoustic imaging of breast: detection of cancer angiogenesis. Proc.SPIE 3597, 352–363 (1999)Google Scholar
  21. 21.
    P. Beard, Photoacoustic imaging of blood vessel equivalent phantoms. Proc. SPIE 4618, 55 (2002)Google Scholar
  22. 22.
    B.T. Cox, P.C. Beard, Fast calculation of pulsed photoacoustic fields in fluids using k-space methods. J. Acoust. Soc. Am. 117, 3616–3627 (2005)CrossRefGoogle Scholar
  23. 23.
    B.T. Cox, J.G. Laufer, P.C. Beard, The challenges for quantitative photoacoustic imaging. Proc. SPIE 7177, 717713 (2009)CrossRefGoogle Scholar
  24. 24.
    P. Kuchment, L. Kunyansky, A survey in mathematics for industry Mathematics of thermoacoustic tomography. Eur. J. Appl. Math. 19, 191–224 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    B.E. Treeby, B.T. Cox, k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15, 021314 (2010)CrossRefGoogle Scholar
  26. 26.
    C. Kim, T.N. Erpelding, L. Jankovic, M.D. Pashley, L.H.V. Wang, Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed. Opt. Express 1, 278–284 (2010)CrossRefGoogle Scholar
  27. 27.
    J.J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, M. Frenz, Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans. Med. Imaging 24, 436–440 (2005)CrossRefGoogle Scholar
  28. 28.
    C. Kim, T.N. Erpelding, L. Jankovic, L.V. Wang, Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Philos. Trans. R. Soc. Publishing Ser. A: Math. Phys. Eng. Sci. 369, 4644–4650 (2011)Google Scholar
  29. 29.
    R.J. Zemp, L.A. Song, R. Bitton, K.K. Shung, L.H.V. Wang, Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer. Opt. Express 16, 7915–7928 (2008)CrossRefGoogle Scholar
  30. 30.
    R.G.M. Kolkman, P.J. Brands, W. Steenbergen, T.G. van Leeuwen, Real-time photoacoustic & ultrasound imaging of human vasculature. Proc. SPIE 7177, 717704 (2009)CrossRefGoogle Scholar
  31. 31.
    S. Park, J. Shah, S.R. Aglyamov, A.B. Karpiouk, S. Mallidi, A. Gopal, H. Moon, X.J. Zhang, W.G. Scott, S.Y. Emelianov, Integrated system for ultrasonic, photoacoustic and elasticity imaging. Proc. SPIE 6147, 61470H (2006)CrossRefGoogle Scholar
  32. 32.
    J. Jose, R.G. Willemink, S. Resink, D. Piras, J.C. van Hespen, C.H. Slump, W. Steenbergen, T.G. van Leeuwen, S. Manohar, Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption. Opt. Express 19, 2093–2104 (2011)CrossRefGoogle Scholar
  33. 33.
    X.D. Wang, J.B. Fowlkes, J.M. Cannata, C.H. Hu, P.L. Carson, Photoacoustic imaging with a commercial ultrasound system and a custom probe. Ultrasound Med. Biol. 37, 484–492 (2011)CrossRefGoogle Scholar
  34. 34.
    K.P. Kostli, D. Frauchiger, J.J. Niederhauser, G. Paltauf, H.P. Weber, M. Frenz, Optoacoustic imaging using a three-dimensional reconstruction algorithm. IEEE J. Sel. Top. Quantum Electron. 7, 918–923 (2001)CrossRefGoogle Scholar
  35. 35.
    R.G.M. Kolkman, P.J. Brands, W. Steenbergen, T.G. van Leeuwen, Real-time in vivo photoacoustic and ultrasound imaging. J. Biomed. Opt. 13, 050510 (2008)CrossRefGoogle Scholar
  36. 36.
    K. Daoudi, P.J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, W. Steenbergen, Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging. Opt. Express 22, 26365–26374 (2014)CrossRefGoogle Scholar
  37. 37.
    C. Haisch, K. Eilert-Zell, M.M. Vogel, P. Menzenbach, R. Niessner, Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations. Anal. Bioanal. Chem. 397, 1503–1510 (2010)CrossRefGoogle Scholar
  38. 38.
    M.P. Fronheiser, S.A. Ermilov, H.P. Brecht, A. Conjusteau, R. Su, K. Mehta, A.A. Oraevsky, Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. J. Biomed. Opt. 15, 021305 (2010)CrossRefGoogle Scholar
  39. 39.
    L.G. Montilla, R. Olafsson, D.R. Bauer, R.S. Witte, Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays. Phys. Med. Biol. 58, N1–N12 (2013)CrossRefGoogle Scholar
  40. 40.
    A. Buehler, M. Kacprowicz, A. Taruttis, V. Ntziachristos, Real-time handheld multispectral optoacoustic imaging. Opt. Lett. 38, 1404–1406 (2013)CrossRefGoogle Scholar
  41. 41.
    A. Dima, V. Ntziachristos, Non-invasive carotid imaging using optoacoustic tomography. Opt. Express 20, 25044–25057 (2012)CrossRefGoogle Scholar
  42. 42.
    X.L. Dean-Ben, D. Razansky, Functional optoacoustic human angiography with handheld video rate three dimensional scanner. Photoacoustics 1, 68–73 (2013)CrossRefGoogle Scholar
  43. 43.
    X.L. Dean-Ben, D. Razansky, Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Nat. Light: Sci. Appl. 3, e137 (2014)Google Scholar
  44. 44.
    A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, F.S. Foster, Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 888–897 (2013)CrossRefGoogle Scholar
  45. 45.
    G.C. Langhout, D.J. Grootendorst, O.E. Nieweg, M.W. Wouters, J.A. van der Hage, J. Jose, H. van Boven, W. Steenbergen, S. Manohar, T.J. Ruers, Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging. Int. J. Biomed. Imaging 2014, 163652 (2014)CrossRefGoogle Scholar
  46. 46.
    J. Yuan, G. Xu, Y. Yu, Y. Zhou, P.L. Carson, X.D. Wang, X.J. Liu, Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization. J. Biomed. Opt. 18, 086001 (2013)CrossRefGoogle Scholar
  47. 47.
    G. Xu, J.R. Rajian, G. Girish, M.J. Kaplan, J.B. Fowlkes, P.L. Carson, X.D. Wang, Photoacoustic and ultrasound dual-modality imaging of human peripheral joints. J. Biomed. Opt. 18, 010502 (2013)CrossRefGoogle Scholar
  48. 48.
    Y. Cho, C.C. Chang, M. Jeon, C. Kim, L.H.V. Wang, J. Zou, A handheld optical fiber parallel acoustic delay line (PADL) probe for photoacoustic tomography. Proc. SPIE 8943, 89432W (2014)CrossRefGoogle Scholar
  49. 49.
    Y. Cho, C.C. Chang, J. Yu, M. Jeon, C. Kim, L.V. Wang, J. Zou, Handheld photoacoustic tomography probe built using optical-fiber parallel acoustic delay lines. J. Biomed. Opt. 19, 086007 (2014)CrossRefGoogle Scholar
  50. 50.
    J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, S.Y. Emelianov, Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt. 13, 034024 (2008)CrossRefGoogle Scholar
  51. 51.
    H.X. Ke, S. Tai, L.H.V. Wang, Photoacoustic thermography of tissue. J. Biomed. Opt. 19, 026003 (2014)CrossRefGoogle Scholar
  52. 52.
    A.A. Karabutov, E.V. Savateeva, N.B. Podymova, A.A. Oraevsky, Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. J. Appl. Phys. 87, 2003–2014 (2000)CrossRefGoogle Scholar
  53. 53.
    W. Xia, D. Piras, J.C. van Hespen, S. van Veldhoven, C. Prins, T.G. van Leeuwen, W. Steenbergen, S. Manohar, An optimized ultrasound detector for photoacoustic breast tomography. Med. Phys. 40, 032901 (2013)CrossRefGoogle Scholar
  54. 54.
    S. Vaithilingam, T.J. Ma, Y. Furukawa, I.O. Wygant, X.F. Zhuang, A. De la Zerda, O. Oralkan, A. Kamaya, S.S. Gambhir, R.B. Jeffrey, B.T. Khuri-Yakub, Three-Dimensional Photoacoustic Imaging Using a Two-Dimensional CMUT Array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2411–2419 (2009)CrossRefGoogle Scholar
  55. 55.
    R. Bouchard, O. Sahin, S. Emelianov, Ultrasound-guided photoacoustic imaging: current state and future development. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 450–466 (2014)CrossRefGoogle Scholar
  56. 56.
    X.L. Dean-Ben, E. Bay, D. Razansky, Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data. Nat. Sci. Rep. 4, 5878 (2014)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.University of TwenteBiomedical Photonic Imaging Group, MIRA InstituteAE EnschedeThe Netherlands

Personalised recommendations