High Resolution Optical Coherence Tomography for Bio-Imaging

  • Jianhua Mo
  • Xiaojun Yu
  • Linbo LiuEmail author
Part of the Progress in Optical Science and Photonics book series (POSP, volume 3)


Optical coherence tomography (OCT) is a low-coherence interferometry based bio-imaging technology. It has attracted extensive research interests in recent years for its non-invasive, high-speed and high-resolution properties. Numerous schemes for improving OCT resolutions have been demonstrated in literature. This chapter gives a comprehensive review of the recent developments of spectral domain (SD)-OCT systems with either high axial-resolution or lateral resolution, and then highlights the wide applications of such high-resolution OCT systems in biomedical imaging process. The influences of high-resolution OCT systems towards translational medicine are also discussed.


Optical Coherence Tomography Optical Coherence Tomography Imaging Axial Resolution Phase Plate Bessel Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Jianhua Mo is supported in part by Soochow University, China (Startup grant: Jianhua Mo) and Natural Science Foundation of Jiangsu Province (SBK2014043010). Linbo Liu is supported in part by the Nanyang Technological University (Startup grant: Linbo Liu), National Research Foundation Singapore (NRF2013NRF-POC001-021), National Medical Research Council Singapore (NMRC/CBRG/0036/2013), Ministry of Education Singapore (MOE2013-T2-2-107).


  1. 1.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178–1181 (1991)CrossRefGoogle Scholar
  2. 2.
    W. Drexler, J.G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008)Google Scholar
  3. 3.
    A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)CrossRefGoogle Scholar
  4. 4.
    T. Klein, W. Wieser, C.M. Eigenwillig, B.R. Biedermann, R. Huber, Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt. Express 19, 3044–3062 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography. Opt. Express 14, 1862–1877 (2006)CrossRefGoogle Scholar
  6. 6.
    S.A. Boppart, B.E. Bouma, C. Pitris, J.F. Southern, M.E. Brezinski, J.G. Fujimoto, In vivo cellular optical coherence tomography imaging. Nat. Med. 4, 861–865 (1998)CrossRefGoogle Scholar
  7. 7.
    E.J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P.K. Ahnelt, W. Drexler, Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt. Express 16, 11083–11094 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Choma, M. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)CrossRefGoogle Scholar
  9. 9.
    G. Hausler, M.W. Lindner, “Coherence Radar” and “Spectral Radar”—New tools for dermatological diagnosis. J. Biomed. Opt. 3, 21–31 (1998)CrossRefGoogle Scholar
  10. 10.
    E.A. Swanson, D. Huang, C. Lin, C. Puliafito, M. Hee, J. Fujimoto, High-speed optical coherence domain reflectometry. Opt. Lett. 17, 151–153 (1992)CrossRefGoogle Scholar
  11. 11.
    A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography-principles and applications. Rep. Prog. Phys. 66, 239 (2003)CrossRefGoogle Scholar
  12. 12.
    M.E. van Velthoven, D.J. Faber, F.D. Verbraak, T.G. van Leeuwen, M.D. de Smet, Recent developments in optical coherence tomography for imaging the retina. Progr. Retinal Eye Res. 26, 57–77 (2007)CrossRefGoogle Scholar
  13. 13.
    M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113, 325–332 (1995)CrossRefGoogle Scholar
  14. 14.
    M.E. van Velthoven, F.D. Verbraak, L.A. Yannuzzi, R.B. Rosen, A.G. Podoleanu, M.D. De Smet, Imaging the retina by en face optical coherence tomography. Retina 26, 129–136 (2006)CrossRefGoogle Scholar
  15. 15.
    W. Drexler, Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9, 47–74 (2004)CrossRefGoogle Scholar
  16. 16.
    J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003)CrossRefGoogle Scholar
  17. 17.
    M. Wojtkowski, T. Bajraszewski, P. Targowski, A. Kowalczyk, Real-time in vivo imaging by high-speed spectral optical coherence tomography. Opt. Lett. 28, 1745–1747 (2003)CrossRefGoogle Scholar
  18. 18.
    N. Nassif, B. Cense, B. Hyle Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, JFd Boer, In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt. Lett. 29, 480–482 (2004)CrossRefGoogle Scholar
  19. 19.
    N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, J. de Boer, In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Express 12, 367–376 (2004)CrossRefGoogle Scholar
  20. 20.
    E. Götzinger, M. Pircher, C.K. Hitzenberger, High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt. Express 13, 10217–10229 (2005)CrossRefGoogle Scholar
  21. 21.
    B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, J. de Boer, In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. Opt. Express 11, 3490–3497 (2003)CrossRefGoogle Scholar
  22. 22.
    M. Wojtkowski, R. Leitgeb, A. Kowalczyk, A.F. Fercher, T. Bajraszewski, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7, 457–463 (2002)CrossRefGoogle Scholar
  23. 23.
    Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, Y. Yasuno, High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography. Opt. Express 15, 7103–7116 (2007)CrossRefGoogle Scholar
  24. 24.
    H.-C. Lee, J.J. Liu, Y. Sheikine, A.D. Aguirre, J.L. Connolly, J.G. Fujimoto, Ultrahigh speed spectral-domain optical coherence microscopy. Biomed. Opt. Express 4, 1236–1254 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Zhang, L. Ma, P. Yu, Dual-band Fourier domain optical coherence tomography with depth-related compensations. Biomed. Opt. Express 5, 167–182 (2014)CrossRefGoogle Scholar
  26. 26.
    B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, J. de Boer, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 12, 2435–2447 (2004)CrossRefGoogle Scholar
  27. 27.
    M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, J.S. Duker, Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 12, 2404–2422 (2004)CrossRefGoogle Scholar
  28. 28.
    R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, A. Fercher, Ultrahigh resolution Fourier domain optical coherence tomography. Opt. Express 12, 2156–2165 (2004)CrossRefGoogle Scholar
  29. 29.
    J. Schmitt, A. Knüttel, Model of optical coherence tomography of heterogeneous tissue. JOSA A 14, 1231–1242 (1997)CrossRefGoogle Scholar
  30. 30.
    S. Yun, G. Tearney, J. de Boer, N. Iftimia, B. Bouma, High-speed optical frequency-domain imaging. Opt. Express 11, 2953–2963 (2003)CrossRefGoogle Scholar
  31. 31.
    S.H. Yun, G.J. Tearney, B.J. Vakoc, M. Shishkov, W.Y. Oh, A.E. Desjardins, M.J. Suter, R.C. Chan, J.A. Evans, I.K. Jang, N.S. Nishioka, J.F. de Boer, B.E. Bouma, Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12, 1429–1433 (2006)CrossRefGoogle Scholar
  32. 32.
    M. Gora, K. Karnowski, M. Szkulmowski, B.J. Kaluzny, R. Huber, A. Kowalczyk, M. Wojtkowski, Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt. Express 17, 14880–14894 (2009)CrossRefGoogle Scholar
  33. 33.
    E. Braunwald, E.M. Antman, J.W. Beasley, R.M. Califf, M.D. Cheitlin, J.S. Hochman, R.H. Jones, D. Kereiakes, J. Kupersmith, T.N. Levin, C.J. Pepine, J.W. Schaeffer, E.E. Smith 3rd, D.E. Steward, P. Theroux, R.J. Gibbons, J.S. Alpert, D.P. Faxon, V. Fuster, G. Gregoratos, L.F. Hiratzka, A.K. Jacobs, S.C. Smith Jr, ACC/AHA guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction–2002: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Unstable Angina). Circulation 106, 1893–1900 (2002)CrossRefGoogle Scholar
  34. 34.
    R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, K. Hsu, Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express 13, 3513–3528 (2005)CrossRefGoogle Scholar
  35. 35.
    R. Huber, M. Wojtkowski, J.G. Fujimoto, J. Jiang, A. Cable, Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt. Express 13, 10523–10538 (2005)CrossRefGoogle Scholar
  36. 36.
    R. Huber, M. Wojtkowski, J.G. Fujimoto, Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14, 3225–3237 (2006)CrossRefGoogle Scholar
  37. 37.
    M.A. Choma, K. Hsu, J.A. Izatt, Swept source optical coherence tomography using an all-fiber 1300‐nm ring laser source. J. Biomed. Opt. 10, 044009-044009-044006 (2005)Google Scholar
  38. 38.
    S. Yun, G. Tearney, B. Bouma, B. Park, J. de Boer, High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength. Opt. Express 11, 3598–3604 (2003)CrossRefGoogle Scholar
  39. 39.
    L. Pantanowitz, P.L. Hsiung, T.H. Ko, K. Schneider, P.R. Herz, J.G. Fujimoto, S. Raza, J.L. Connolly, High-resolution imaging of the thyroid gland using optical coherence tomography. Head Neck 26, 425–434 (2004)CrossRefGoogle Scholar
  40. 40.
    P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, C. Petersen, Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography. Opt. Express 12, 3532–3542 (2004)CrossRefGoogle Scholar
  41. 41.
    P.-L. Hsiung, L. Pantanowitz, A.D. Aguirre, Y. Chen, D. Phatak, T.H. Ko, S. Bourquin, S.J. Schnitt, S. Raza, J.L. Connolly, Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines. Gastrointest. Endosc. 62, 561–574 (2005)CrossRefGoogle Scholar
  42. 42.
    B. Park, M.C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, J. de Boer, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm. Opt. Express 13, 3931–3944 (2005)CrossRefGoogle Scholar
  43. 43.
    M.M. Eberle, C.L. Reynolds, J.I. Szu, Y. Wang, A.M. Hansen, M.S. Hsu, M.S. Islam, D.K. Binder, B.H. Park, In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography. Biomed. Opt. Express 3, 2700–2706 (2012)CrossRefGoogle Scholar
  44. 44.
    Y. Wang, C.M. Oh, M.C. Oliveira, M.S. Islam, A. Ortega, B.H. Park, GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm. Opt. Express 20, 14797–14813 (2012)CrossRefGoogle Scholar
  45. 45.
    Y. Watanabe, Y. Takahashi, H. Numazawa, Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction. J. Biomed. Opt. 19, 021105–021105 (2014)CrossRefGoogle Scholar
  46. 46.
    C.L. Rodriguez, J.I. Szu, M.M. Eberle, Y. Wang, M.S. Hsu, D.K. Binder, B.H. Park, Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography. Neurophotonics 1, 025004–025004 (2014)CrossRefGoogle Scholar
  47. 47.
    B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A.F. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J.C. Knight, P.S.J. Russell, M. Vetterlein, E. Scherzer, Submicrometer axial resolution optical coherence tomography. Opt. Lett. 27, 1800–1802 (2002)CrossRefGoogle Scholar
  48. 48.
    Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, R. Windeler, Optimal wavelength for ultrahigh-resolution optical coherence tomography. Opt. Express 11, 1411–1417 (2003)CrossRefGoogle Scholar
  49. 49.
    S. Bourquin, A. Aguirre, I. Hartl, P. Hsiung, T. Ko, J. Fujimoto, T. Birks, W. Wadsworth, U. Bünting, D. Kopf, Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd: glass laser and nonlinear fiber. Opt. Express 11, 3290–3297 (2003)CrossRefGoogle Scholar
  50. 50.
    B. Potsaid, B. Baumann, D. Huang, S. Barry, A.E. Cable, J.S. Schuman, J.S. Duker, J.G. Fujimoto, Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express 18, 20029–20048 (2010)CrossRefGoogle Scholar
  51. 51.
    I. Grulkowski, J.J. Liu, B. Potsaid, V. Jayaraman, C.D. Lu, J. Jiang, A.E. Cable, J.S. Duker, J.G. Fujimoto, Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed. Opt. Express 3, 2733–2751 (2012)CrossRefGoogle Scholar
  52. 52.
    S. Makita, T. Fabritius, Y. Yasuno, Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. Opt. Express 16, 8406–8420 (2008)CrossRefGoogle Scholar
  53. 53.
    L. An, P. Li, G. Lan, D. Malchow, R.K. Wang, High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth. Biomed. Opt. Express 4, 245–259 (2013)CrossRefGoogle Scholar
  54. 54.
    M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, J. de Boer, Retinal nerve fiber layer thickness map determined from optical coherence tomography images. Opt. Express 13, 9480–9491 (2005)CrossRefGoogle Scholar
  55. 55.
    P.-L. Hsiung, D.R. Phatak, Y. Chen, A.D. Aguirre, J.G. Fujimoto, J.L. Connolly, Benign and malignant lesions in the human breast depicted with ultrahigh resolution and three-dimensional optical coherence tomography 1. Radiology 244, 865–874 (2007)CrossRefGoogle Scholar
  56. 56.
    M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N.J. Sheen, R.V. North, W. Drexler, Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest. Ophthalmol. Vis. Sci. 51, 5260–5266 (2010)CrossRefGoogle Scholar
  57. 57.
    V.J. Srinivasan, T.H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S.-E. Bursell, Q.H. Song, J. Lem, J.S. Duker, J.S. Schuman, Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 47, 5522–5528 (2006)CrossRefGoogle Scholar
  58. 58.
    W. Drexler, J.G. Fujimoto, State-of-the-art retinal optical coherence tomography. Progr. Retinal Eye Res. 27, 45–88 (2008)CrossRefGoogle Scholar
  59. 59.
    A.G. Podoleanu, R.B. Rosen, Combinations of techniques in imaging the retina with high resolution. Progr. Retinal Eye Res. 27, 464–499 (2008)CrossRefGoogle Scholar
  60. 60.
    M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M.E. Jockovich, A. Hackam, Y. Duan, C.A. Puliafito, In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 48, 1808–1814 (2007)CrossRefGoogle Scholar
  61. 61.
    M. Fleckenstein, P.C. Issa, H.-M. Helb, S. Schmitz-Valckenberg, R.P. Finger, H.P. Scholl, K.U. Loeffler, F.G. Holz, High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 49, 4137–4144 (2008)CrossRefGoogle Scholar
  62. 62.
    M.B. Rüegsegger, D. Geiser, P. Steiner, A. Pica, D.M. Aebersold, J.H. Kowal, Noninvasive referencing of intraocular tumors for external beam radiation therapy using optical coherence tomography: a proof of concept. Med. Phys. 41, 081704 (2014)CrossRefGoogle Scholar
  63. 63.
    K. Bizheva, A. Stingl, M. Mei, H.A. Reitsamer, J.E. Morgan, A. Cowey, R. Holzwarth, T. Le, A. Unterhuber, B. Hermann, Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography. J. Biomed. Opt. 9, 719–724 (2004)CrossRefGoogle Scholar
  64. 64.
    K. Bizheva, A. Unterhuber, B. Hermann, B. PovazË, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography. J. Biomed. Opt. 10, 011006–0110067 (2005)CrossRefGoogle Scholar
  65. 65.
    A.R. Tumlinson, J.K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R.A. Leitgeb, W. Drexler, Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon. Opt. Express 14, 1878–1887 (2006)CrossRefGoogle Scholar
  66. 66.
    A.R. Tumlinson, B. Považay, L.P. Hariri, J. McNally, A. Unterhuber, J.K. Barton, B. Hermann, H. Sattmann, W. Drexler, In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope. J. Biomed. Opt. 11, 064003-064003-064008 (2006)Google Scholar
  67. 67.
    A.R. Tumlinson, L.P. Hariri, U. Utzinger, J.K. Barton, Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement. Appl. Opt. 43, 113–121 (2004)CrossRefGoogle Scholar
  68. 68.
    T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, Interferometric synthetic aperture microscopy. Nat. Phys. 3, 129–134 (2007)CrossRefGoogle Scholar
  69. 69.
    J. Mo, M. de Groot, J.F. de Boer, Focus-extension by depth-encoded synthetic aperture in optical coherence tomography. Opt. Express 21, 10048–10061 (2013)CrossRefGoogle Scholar
  70. 70.
    M. de Groot, C.L. Evans, J.F. de Boer, Self-interference fluorescence microscopy: three dimensional fluorescence imaging without depth scanning. Opt. Express 20, 15253–15262 (2012)CrossRefGoogle Scholar
  71. 71.
    L. Liu, C. Liu, W.C. Howe, C. Sheppard, N. Chen, Binary-phase spatial filter for real-time swept-source optical coherence microscopy. Opt. Lett. 32, 2375–2377 (2007)CrossRefGoogle Scholar
  72. 72.
    R.A. Leitgeb, M. Villiger, A.H. Bachmann, L. Steinmann, T. Lasser, Extended focus depth for Fourier domain optical coherence microscopy. Opt. Lett. 31, 2450–2452 (2006)CrossRefGoogle Scholar
  73. 73.
    Y. Yasuno, J.-I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, T. Yatagai, Non-iterative numerical method for laterally super resolving Fourier domain optical coherence tomography. Opt. Express 14, 1006–1020 (2006)CrossRefGoogle Scholar
  74. 74.
    G. Liu, S. Yousefi, Z. Zhi, R.K. Wang, Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach. Opt. Express 19, 18135–18148 (2011)CrossRefGoogle Scholar
  75. 75.
    T.S. Ralston, D.L. Marks, F. Kamalabadi, S.A. Boppart, Deconvolution methods for mitigation of transverse blurring in optical coherence tomography. IEEE Trans. Image Process. 14, 1254–1264 (2005)CrossRefGoogle Scholar
  76. 76.
    L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, Z. Chen, Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method. Opt. Express 15, 7634–7641 (2007)CrossRefGoogle Scholar
  77. 77.
    G. Liu, Z. Zhi, R.K. Wang, Digital focusing of OCT images based on scalar diffraction theory and information entropy. Biomed. Opt. Express 3, 2774–2783 (2012)CrossRefGoogle Scholar
  78. 78.
    Z. Jaroszewicz, A. Burvall, A.T. Friberg, Axicon-the most important optical element. Opt. Photonics News 16, 34–39 (2005)CrossRefGoogle Scholar
  79. 79.
    I. Golub, Fresnel axicon. Opt. Lett. 31, 1890–1892 (2006)CrossRefGoogle Scholar
  80. 80.
    Z. Ding, H. Ren, Y. Zhao, J.S. Nelson, Z. Chen, High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt. Lett. 27, 243–245 (2002)CrossRefGoogle Scholar
  81. 81.
    K.-S. Lee, J.P. Rolland, Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range. Opt. Lett. 33, 1696–1698 (2008)CrossRefGoogle Scholar
  82. 82.
    D. Lorenser, C. Christian Singe, A. Curatolo, D.D. Sampson, Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography. Opt. Lett. 39, 548–551 (2014)CrossRefGoogle Scholar
  83. 83.
    M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, R.A. Leitgeb, In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy. Diabetologia 52, 1599–1607 (2009)CrossRefGoogle Scholar
  84. 84.
    C. Blatter, B. Grajciar, C.M. Eigenwillig, W. Wieser, B.R. Biedermann, R. Huber, R.A. Leitgeb, Extended focus high-speed swept source OCT with self-reconstructive illumination. Opt. Express 19, 12141–12155 (2011)CrossRefGoogle Scholar
  85. 85.
    X. Yu, X. Liu, J. Gu, D. Cui, J.L.L. Wu, Depth extension and sidelobe suppression in optical coherence tomography using pupil filters. Opt. Express 22, 11 (2014)Google Scholar
  86. 86.
    H. Wang, F. Gan, High focal depth with a pure-phase apodizer. Appl. Opt. 40, 5658–5662 (2001)CrossRefGoogle Scholar
  87. 87.
    M. Gu, C. Sheppard, X. Gan, Image formation in a fiber-optical confocal scanning microscope. JOSA A 8, 1755–1761 (1991)CrossRefGoogle Scholar
  88. 88.
    L. Liu, F. Diaz, L. Wang, B. Loiseaux, J.-P. Huignard, C. Sheppard, N. Chen, Superresolution along extended depth of focus with binary-phase filters for the Gaussian beam. JOSA A 25, 2095–2101 (2008)CrossRefGoogle Scholar
  89. 89.
    D. Lorenser, X. Yang, D.D. Sampson, Ultrathin fiber probes with extended depth of focus for optical coherence tomography. Opt. Lett. 37, 1616–1618 (2012)CrossRefGoogle Scholar
  90. 90.
    C.J. Sheppard, S. Mehta, Three-level filter for increased depth of focus and Bessel beam generation. Opt. Express 20, 27212–27221 (2012)CrossRefGoogle Scholar
  91. 91.
    Y. Xu, J. Singh, C.J. Sheppard, N. Chen, Ultra long high resolution beam by multi-zone rotationally symmetrical complex pupil filter. Opt. Express 15, 6409–6413 (2007)CrossRefGoogle Scholar
  92. 92.
    L. Liu, J.A. Gardecki, S.K. Nadkarni, J.D. Toussaint, Y. Yagi, B.E. Bouma, G.J. Tearney, Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat. Med. 17, 1010–1014 (2011)CrossRefGoogle Scholar
  93. 93.
    E. Bousi, S. Timotheou, C. Pitris, Design of pupil filter for extended depth of focus and lateral superresolution in optical coherence tomography, in SPIE BiOS, (International Society for Optics and Photonics, 2014), 893435-893435-893437Google Scholar
  94. 94.
    L. Liu, K.K. Chu, G.H. Houser, B.J. Diephuis, Y. Li, E.J. Wilsterman, S. Shastry, G. Dierksen, S.E. Birket, M. Mazur, Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography. PLoS ONE 8, e54473 (2013)CrossRefGoogle Scholar
  95. 95.
    L. Liu, S. Shastry, S. Byan-Parker, G. Houser, K. Chu, S.E. Birket, C.M. Fernandez, J. Gardecki, W. Grizzle, E. Wilsterman, An autoregulatory mechanism governing mucociliary transport is sensitive to mucus load. Am. J. Respir. Cell Mol. biol. (2014)Google Scholar
  96. 96.
    P. Tankam, A.P. Santhanam, K.-S. Lee, J. Won, C. Canavesi, J.P. Rolland, Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy. J. Biomed. Opt. 19, 071410–071410 (2014)CrossRefGoogle Scholar
  97. 97.
    A. Ahmad, N.D. Shemonski, S.G. Adie, H.-S. Kim, W.-M.W. Hwu, P.S. Carney, S.A. Boppart, Real-time in vivo computed optical interferometric tomography. Nat. Photonics 7, 444–448 (2013)CrossRefGoogle Scholar
  98. 98.
    N. Weber, D. Spether, A. Seifert, H. Zappe, Highly compact imaging using Bessel beams generated by ultraminiaturized multi-micro-axicon systems. JOSA A 29, 808–816 (2012)CrossRefGoogle Scholar
  99. 99.
    I.E. Commission, IEC 60825-1, Safety of Laser Products—Part 1(2001)Google Scholar
  100. 100.
    D.J. Fechtig, T. Schmoll, B. Grajciar, W. Drexler, R.A. Leitgeb, Line-field parallel swept source interferometric imaging at up to 1 MHz. Opt. Lett. 39, 5333–5336 (2014)CrossRefGoogle Scholar
  101. 101.
    D.J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R.M. Werkmeister, W. Drexler, R.A. Leitgeb, Line-field parallel swept source MHz OCT for structural and functional retinal imaging. Biomed. Opt. Express 6, 716–735 (2015)CrossRefGoogle Scholar
  102. 102.
    X. Yu, X. Liu, D. Cui, J. Gu, L. Liu, Ultrahigh-resolution optical coherence tomography with enhanced sensitivity and imaging depth using spectrally extended source. Opt. Express Submitted (2015)Google Scholar
  103. 103.
    X. Liu, X. Yu, H. Tang, D. Cui, M.R. Beotra, M.J. Girard, D. Sun, J. Gu, L. Liu, Spectrally encoded extended source optical coherence tomography. Opt. Lett. 39, 6803–6806 (2014)CrossRefGoogle Scholar
  104. 104.
    K.K. Chu, G.J. Ughi, L. Liu, G.J. Tearney, Toward clinical μOCT—a review of resolution-enhancing technical advances. Curr. Cardiovasc. Imaging Rep. 7, 1–8 (2014)CrossRefGoogle Scholar
  105. 105.
    M. Kashiwagi, L. Liu, K.K. Chu, C.-H. Sun, A. Tanaka, J.A. Gardecki, G.J. Tearney, Feasibility of the assessment of cholesterol crystals in human macrophages using micro optical coherence tomography. PLoS ONE 9, e102669 (2014)CrossRefGoogle Scholar
  106. 106.
    Y. Nomura, K.K. Chu, J.A. Gardecki, C.-H. Sun, L. Liu, E. Martinez-Martinez, E. Aikawa, G.J. Tearney, Innovations in microscopic imaging of atherosclerosis and valvular disease, in Cardiovascular Imaging (Springer, 2015), pp. 251–265Google Scholar
  107. 107.
    M.J. Gora, J.S. Sauk, R.W. Carruth, K.A. Gallagher, M.J. Suter, N.S. Nishioka, L.E. Kava, M. Rosenberg, B.E. Bouma, G.J. Tearney, Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19, 238–240 (2013)CrossRefGoogle Scholar
  108. 108.
    Z. Yaqoob, E. McDowell, J. Wu, C. Yang, Pump-probe optical coherence tomography using indocyanine green as a contrast agent, in Biomedical Optics 2006, (International Society for Optics and Photonics, 2006), 607904-607904-607908Google Scholar
  109. 109.
    E. Beaurepaire, L. Moreaux, F. Amblard, J. Mertz, Combined scanning optical coherence and two-photon-excited fluorescence microscopy. Opt. Lett. 24, 969–971 (1999)CrossRefGoogle Scholar
  110. 110.
    H. Tu, Y. Zhao, Y. Liu, Y.-Z. Liu, S. Boppart, Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy. Opt. Express 22, 20138–20143 (2014)CrossRefGoogle Scholar
  111. 111.
    Y. Yoon, W.H. Jang, P. Xiao, B. Kim, T. Wang, Q. Li, J.Y. Lee, E. Chung, K.H. Kim, In vivo wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography of human oral cavity with a forward-viewing probe. Biomed. Opt. Express 6, 524–535 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringSooChow UniversitySoochowPeople’s Republic of China
  2. 2.School of Electrical and Electronic EngineeringNanyang Technological UniversityNanyangSingapore
  3. 3.School of Chemical and Biomedical EngineeringNanyang Technological UniversityNanyangSingapore

Personalised recommendations