Raman Spectroscopy Techniques: Developments and Applications in Translational Medicine

  • Kenny Kong
  • Ioan NotingherEmail author
Part of the Progress in Optical Science and Photonics book series (POSP, volume 3)


Raman spectroscopy is a powerful tool for measuring chemical properties of biological samples. This technique is based on inelastic scattering of light by molecules. The frequency shifts of the scattered light are related to the characteristic vibrational frequencies of the molecules, therefore the Raman spectrum is a “chemical fingerprint” of the sample. Raman spectroscopy has several features that make it attractive for translational medicine applications: (i) it requires no (or minimal) sample preparation; (ii) no labelling is required as diagnosis is based on the intrinsic chemical contrast of the sample; (iii) Raman spectroscopy uses light in the visible or near-infrared regions of the electromagnetic spectrum, where high performance microscopy and optoelectronics components have been developed during the last decades. Thus, recent advances in laser technologies, fibre optics, optical microscopes and light detectors, have brought Raman spectroscopy closer to real medical and clinical applications. This chapter reviews the main Raman spectroscopy techniques applied to translational medicine and provides an overview of various applications.


Raman Spectrum Raman Spectroscopy Surface Enhance Raman Spectroscopy Basal Cell Carcinoma Surface Enhance Raman Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Z.W. Huang, A. McWilliams, H. Lui, D.I. McLean, S. Lam, H.S. Zeng, Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int. J. Cancer 107, 1047–1052 (2003)CrossRefGoogle Scholar
  2. 2.
    N.D. Magee, J.R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D.A. Fennell, P.W. Hamilton, M. Ennis, J.J. McGarvey, J.S. Elborn, Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer. J. Biomed. Opt. 15(2), 026015 (2010)Google Scholar
  3. 3.
    J. Ferlay, P. Autier, M. Boniol, M. Heanue, M. Colombet, P. Boyle, Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol. 18, 581–592 (2007)CrossRefGoogle Scholar
  4. 4.
    I. Ellis et al., Pathology reporting of breast disease A Joint Document Incorporating the Third Edition of the NHS Breast Screening Programme’s Guidelines for Pathology Reporting in Breast Cancer Screening and the Second Edition of The Royal College of Pathologists’ Minimum Dataset for Breast Cancer Histopathology (Sheffield, NHSBSP Publication, 2005)Google Scholar
  5. 5.
    A.S. Haka, K.E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R.R. Dasari, M.S. Feld, Diagnosing breast cancer by using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 102, 12371–12376 (2005)CrossRefGoogle Scholar
  6. 6.
    J. Kneipp, T.B. Schut, M. Kliffen, M. Menke-Pluijmers, G. Puppels, Characterization of breast duct epithelia: a Raman spectroscopic study. Vib. Spectrosc. 32, 67–74 (2003)CrossRefGoogle Scholar
  7. 7.
    J. Smith, C. Kendall, A. Sammon, J. Christie-Brown, N. Stone, Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer. Technol. Cancer Res. Treat. 2, 327–331 (2003)CrossRefGoogle Scholar
  8. 8.
    J. Horsnell, P. Stonelake, J. Christie-Brown, G. Shetty, J. Hutchings, C. Kendall, N. Stone, Raman spectroscopy-a new method for the intra-operative assessment of axillary lymph nodes. Analyst 135, 3042–3047 (2010)CrossRefGoogle Scholar
  9. 9.
    K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, I. Notingher, Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy. Phys. Med. Biol. 59, 6141–6152 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Delhaye, P. Dhamelincourt, Raman microprobe and microscope with laser excitation. J. Raman Spectrosc. 3, 33–43 (1975)CrossRefGoogle Scholar
  11. 11.
    M. Hedegaard, C. Matthaus, S. Hassing, C. Krafft, M. Diem, J. Popp, Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theor. Chem. Acc. 130, 1249–1260 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Nijssen, T.C.B. Schut, F. Heule, P.J. Caspers, D.P. Hayes, M.H.A. Neumann, G.J. Puppels, Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy. J. Invest. Dermatol. 119, 64–69 (2002)CrossRefGoogle Scholar
  13. 13.
    M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I.H. Leach, A.A. Koloydenko, H. Williams, I. Notingher, Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma. J. Biomed. Opt. 14, 054031 (2009)CrossRefGoogle Scholar
  14. 14.
    K. Kong, C.J. Rowlands, S. Varma, W. Perkins, I.H. Leach, A.A. Koloydenko, H.C. Williams, I. Notingher, Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 110, 15189–15194 (2013)CrossRefGoogle Scholar
  15. 15.
    C.J. de Grauw, C. Otto, J. Greve, Line-scan Raman microspectrometry for biological applications. Appl. Spectrosc. 51, 1607–1612 (1997)CrossRefGoogle Scholar
  16. 16.
    M. Okuno, H.-O. Hamaguchi, Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells. Opt. Lett. 35, 4096–4098 (2010)CrossRefGoogle Scholar
  17. 17.
    L. Kong, J. Chan, A Rapidly Modulated Multifocal Detection Scheme for Parallel Acquisition of Raman Spectra from a 2-D Focal Array. Anal. Chem. 86, 6604–6609 (2014)CrossRefGoogle Scholar
  18. 18.
    S.V. Christopher J. Rowlands, W. Perkins, I. Leach, H. Williams, I. Notingher, Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging. J. Biophotonics 1, 1–10 (2012)Google Scholar
  19. 19.
    K. Kong, C.J. Rowlands, S. Varma, W. Perkins, I.H. Leach, A.A. Koloydenko, A. Pitiot, H.C. Williams, I. Notingher, Increasing the speed of tumour diagnosis during surgery with selective scanning Raman microscopy. J. Mol. Struct. 2014, 58–65 (1073)Google Scholar
  20. 20.
    K. Kong, C.J. Rowlands, H. Elsheikha, I. Notingher, Label-free molecular analysis of live Neospora caninum tachyzoites in host cells by selective scanning Raman micro-spectroscopy. Analyst 137, 4119–4122 (2012)CrossRefGoogle Scholar
  21. 21.
    R. Na, I.M. Stender, H.C. Wulf, Can autofluorescence demarcate basal cell carcinoma from normal skin? A comparison with protoporphyrin IX fluorescence. Acta Derm. Venereol. 81, 246–249 (2001)CrossRefGoogle Scholar
  22. 22.
    S. Takamori, K. Kong, S. Varma, I. Leach, H.C. Williams, I. Notingher, Optimization of multimodal spectral imaging for assessment of resection margins during Mohs micrographic surgery for basal cell carcinoma. Biomed. Opt. Express 6, 98–111 (2015)CrossRefGoogle Scholar
  23. 23.
    R.J. O’Callaghan, D.R. Bull, Combined morphological-spectral unsupervised image segmentation. IEEE Trans. Image Process. 14, 49–62 (2005)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985)CrossRefGoogle Scholar
  26. 26.
    M. Fleischmann, P.J. Hendra, A.J. McQuilla, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)CrossRefGoogle Scholar
  27. 27.
    D.L. Jeanmaire, R.P. Vanduyne, Surface Raman spectroelectrochemstry part 1. Heterocyclic, aromatic, and aliphatic-amines absorbed on anodized sliver electrode. J. Electroanal. Chem. 84, 1–20 (1977)CrossRefGoogle Scholar
  28. 28.
    D.A. Stuart, J.M. Yuen, N.S.O. Lyandres, C.R. Yonzon, M.R. Glucksberg, J.T. Walsh, R.P. Van Duyne, In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal. Chem. 78, 7211–7215 (2006)CrossRefGoogle Scholar
  29. 29.
    U.S. Dinish, F.C. Yaw, A. Agarwal, M. Olivo, Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing. Biosens. Bioelectron. 26, 1987–1992 (2011)CrossRefGoogle Scholar
  30. 30.
    K.E. Shafer-Peltier, C.L. Haynes, M.R. Glucksberg, R.P. Van Duyne, Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 125, 588–593 (2003)CrossRefGoogle Scholar
  31. 31.
    J.M. Yuen, N.C. Shah, J.T. Walsh Jr, M.R. Glucksberg, R.P. Van Duyne, Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model. Anal. Chem. 82, 8382–8385 (2010)CrossRefGoogle Scholar
  32. 32.
    D.S. Grubisha, R.J. Lipert, H.Y. Park, J. Driskell, M.D. Porter, Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem. 75, 5936–5943 (2003)CrossRefGoogle Scholar
  33. 33.
    S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, S.S. Gambhir, Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105, 5844–5849 (2008)CrossRefGoogle Scholar
  34. 34.
    C.L. Zavaleta, B.R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M.J. Natan, S.S. Gambhir, Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl. Acad. Sci. USA 106, 13511–13516 (2009)CrossRefGoogle Scholar
  35. 35.
    C.L. Zavaleta, E. Garai, J.T.C. Liu, S. Sensarn, M.J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C.H. Contag, S.S. Gambhir, A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc. Natl. Acad. Sci. USA 110, E2288–E2297 (2013)CrossRefGoogle Scholar
  36. 36.
    X. Qian, X.-H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008)CrossRefGoogle Scholar
  37. 37.
    Y. Wang, S. Rauf, Y.S. Grewal, L.J. Spadafora, M.J.A. Shiddiky, G.A. Cangelosi, S. Schluecker, M. Trau, Duplex microfluidic SERS detection of pathogen antigens with nanoyeast single-chain variable fragments. Anal. Chem. 86, 9930–9938 (2014)CrossRefGoogle Scholar
  38. 38.
    U.S. Dinish, C.Y. Fu, K.S. Soh, R. Bhuvaneswari, A. Kumar, M. Olivo, Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron. 33, 293–298 (2012)CrossRefGoogle Scholar
  39. 39.
    U.S. Dinish, G. Balasundaram, Y.T. Chang, M. Olivo, Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J. Biophotonics 7, 956–965 (2014)CrossRefGoogle Scholar
  40. 40.
    U.S. Dinish, G. Balasundaram, Y.-T. Chang, M. Olivo, Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci. Rep. 4(4075), 1–7 (2014)Google Scholar
  41. 41.
    C.L. Evans, E.O. Potma, M. Puoris’haag, D. Cote, C.P. Lin, X.S. Xie, Chemical imaging of tissue in vivo with video-rate coherent anti-stokes Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005)CrossRefGoogle Scholar
  42. 42.
    O. Uckermann, R. Galli, S. Tamosaityte, E. Leipnitz, K.D. Geiger, G. Schackert, E. Koch, G. Steiner, M. Kirsch, Label-free delineation of brain tumors by coherent anti-stokes Raman scattering microscopy in an orthotopic mouse model and human glioblastoma. PLoS ONE 9, 107115 (2014)CrossRefGoogle Scholar
  43. 43.
    N. Bergner, A. Medyukhina, K.D. Geiger, M. Kirsch, G. Schackert, C. Krafft, J. Popp, Hyperspectral unmixing of Raman micro-images for assessment of morphological and chemical parameters in non-dried brain tumor specimens. Anal. Bioanal. Chem. 405, 8719–8728 (2013)CrossRefGoogle Scholar
  44. 44.
    L. Gao, Z. Wang, F. Li, A.A. Hammoudi, M.J. Thrall, P.T. Cagle, S.T.C. Wong, Differential diagnosis of lung carcinoma with coherent anti-stokes Raman scattering imaging. Arch. Pathol. Lab. Med. 136, 1502–1510 (2012)CrossRefGoogle Scholar
  45. 45.
    J.X. Cheng, X.S. Xie, Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J. Phys. Chem. B 108, 827–840 (2004)CrossRefGoogle Scholar
  46. 46.
    Y. Yang, F. Li, L. Gao, Z. Wang, M.J. Thrall, S.S. Shen, K.K. Wong, S.T.C. Wong, Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging. Biomed. Opt. Express 2, 2160–2174 (2011)CrossRefGoogle Scholar
  47. 47.
    S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.J. Rowert-Huber, J. Lademann, B. Dietzek, J. Popp, Multimodal mapping of human skin. Brit. J. Dermatol. 169, 794–803 (2013)CrossRefGoogle Scholar
  48. 48.
    M.S. Bergholt, W. Zheng, K.Y. Ho, M. Teh, K.G. Yeoh, J.B.Y. So, A. Shabbir, Z.W. Huang, Fiber-optic Raman spectroscopy probes gastric carcinogenesis in vivo at endoscopy. J. Biophotonics 6, 49–59 (2013)CrossRefGoogle Scholar
  49. 49.
    J.C.C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G.M. Meaden, C. Born, S. Yu, N. Stone, A miniature confocal Raman probe for endoscopic use. Phys. Med. Biol. 54, 7077–7087 (2009)CrossRefGoogle Scholar
  50. 50.
    J.C.C. Day, N. Stone, A subcutaneous Raman needle probe. Appl. Phys. Lett. 67, 349–354 (2013)Google Scholar
  51. 51.
    M.G. Shim, B.C. Wilson, E. Marple, M. Wach, Study of fiber-optic probes for in vivo medical Raman spectroscopy. Appl. Spectrosc. 53, 619–627 (1999)CrossRefGoogle Scholar
  52. 52.
    S. Koljenovic, T.C.B. Schut, R. Wolthuis, B. de Jong, L. Santos, P.J. Caspers, J.M. Kros, G.J. Puppels, Tissue characterization using high wave number Raman spectroscopy. J. Biomed. Opt. 10, 031116 (2005)CrossRefGoogle Scholar
  53. 53.
    S. Koljenovic, T.C.B. Schut, R. Wolthuis, A.J.P.E. Vincent, G. Hendriks-Hagevi, L. Santos, J.M. Kros, G.J. Puppels, Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe. Anal. Chem. 79, 557–564 (2007)CrossRefGoogle Scholar
  54. 54.
    M. Sharma, E. Marple, J. Reichenberg, J.W. Tunnell, Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications. Rev. Sci. Instrum. 85, 083101 (2014)CrossRefGoogle Scholar
  55. 55.
    J.S. Soares, I. Barman, N.C. Dingari, Z. Volynskaya, W. Liu, N. Klein, D. Plecha, R.R. Dasari, M. Fitzmaurice, Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proc. Natl. Acad. Sci. USA 110, 471–476 (2013)CrossRefGoogle Scholar
  56. 56.
    R. Cicchi, S. Anand, S. Rossari, A. Sturiale, F. Giordano, V. De Giorgi, V. Maio, D. Massi, G. Nesi, A.M. Buccoliero, F. Tonelli, R. Guerrini, N. Pimpinelli, F.S. Pavone, Multimodal fiber probe spectroscopy for tissue diagnostics applications: a combined Raman-fluorescence approach. P. Soc. Photo-Opt. Ins. 8939 (2014)Google Scholar
  57. 57.
    L.F. Santos, R. Wolthuis, S. Koljenovic, R.M. Almeida, G.J. Puppels, Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region. Anal. Chem. 77, 6747–6752 (2005)CrossRefGoogle Scholar
  58. 58.
    M. Kirsch, G. Schackert, R. Salzer, C. Krafft, Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal. Bioanal. Chem. 398, 1707–1713 (2010)CrossRefGoogle Scholar
  59. 59.
    A.S. Haka, Z. Volynskaya, J.A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R.R. Dasari, M. Fitzmaurice, M.S. Feld, Diagnosing breast cancer using Raman spectroscopy: prospective analysis. J. Biomed. Opt. 14, 054023 (2009)CrossRefGoogle Scholar
  60. 60.
    M.S. Bergholt, W. Zheng, K.Y. Ho, M. Teh, K.G. Yeoh, J.B.Y. So, A. Shabbir, Z. Huang, Fiberoptic confocal Raman spectroscopy for real-time in vivo diagnosis of dysplasia in Barrett’s esophagus. Gastroenterology 146, 27–32 (2014)CrossRefGoogle Scholar
  61. 61.
    J. Wang, M.S. Bergholt, W. Zheng, Z. Huang, Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy. Opt. Lett. 38, 2321–2323 (2013)CrossRefGoogle Scholar
  62. 62.
    C.A. Lieber, S.K. Majumder, D.L. Ellis, D.D. Billheimer, A. Mahadevan-Jansen, In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy. Laser Surg. Med. 40, 461–467 (2008)CrossRefGoogle Scholar
  63. 63.
    H. Lui, J. Zhao, D.I. McLean, H. Zeng, Real-time Raman spectroscopy for in vivo skin cancer diagnosis. Cancer Res. 72, 2491–2500 (2012)CrossRefGoogle Scholar
  64. 64.
    P. Matousek, I.P. Clark, E.R.C. Draper, M.D. Morris, A.E. Goodship, N. Everall, M. Towrie, W.F. Finney, A.W. Parker, Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl. Spectrosc. 59, 393–400 (2005)CrossRefGoogle Scholar
  65. 65.
    R. Baker, P. Matousek, K.L. Ronayne, A.W. Parker, K. Rogers, N. Stone, Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy. Analyst 132, 48–53 (2007)CrossRefGoogle Scholar
  66. 66.
    P. Matousek, N. Stone, Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. J. Biomed. Opt. 12, 024008 (2007)CrossRefGoogle Scholar
  67. 67.
    P. Matousek, N. Stone, Emerging concepts in deep Raman spectroscopy of biological tissue. Analyst 134, 1058–1066 (2009)CrossRefGoogle Scholar
  68. 68.
    N. Stone, K. Faulds, D. Graham, P. Matousek, Prospects of deep Raman spectroscopy for noninvasive detection of conjugated surface enhanced resonance Raman scattering nanoparticles buried within 25 mm of mammalian tissue. Anal. Chem. 82, 3969–3973 (2010)CrossRefGoogle Scholar
  69. 69.
    N. Stone, M. Kerssens, G.R. Lloyd, K. Faulds, D. Graham, P. Matousek, Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging—the next dimension. Chem. Sci. 2, 776–780 (2011)CrossRefGoogle Scholar
  70. 70.
    P. Matousek, A.W. Parker, Bulk Raman analysis of pharmaceutical tablets. Appl. Spectrosc. 60, 1353–1357 (2006)CrossRefGoogle Scholar
  71. 71.
    N. Stone, P. Matousek, Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis. Cancer Res. 68, 4424–4430 (2008)CrossRefGoogle Scholar
  72. 72.
    R. Baker, K.D. Rogers, N. Shepherd, N. Stone, New relationships between breast microcalcifications and cancer. Br. J. Cancer 103, 1034–1039 (2010)CrossRefGoogle Scholar
  73. 73.
    M.M. Kerssens, P. Matousek, K. Rogers, N. Stone, Towards a safe non-invasive method for evaluating the carbonate substitution levels of hydroxyapatite (HAP) in micro-calcifications found in breast tissue. Analyst 135, 3156–3161 (2010)CrossRefGoogle Scholar
  74. 74.
    I. Rehman, R. Smith, L.L. Hench, W. Bonfield, Structural evaluation of human and sheep bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy. J. Biomed. Mater. Res. 29, 1287–1294 (1995)CrossRefGoogle Scholar
  75. 75.
    J.G. Kerns, P.D. Gikas, K. Buckley, A. Shepperd, H.L. Birch, I. McCarthy, J. Miles, T.W.R. Briggs, R. Keen, A.W. Parker, P. Matousek, A.E. Goodship, Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative Joint disease. Arthrit Rheum-Arthr 66, 1237–1246 (2014)CrossRefGoogle Scholar
  76. 76.
    B.R. McCreadie, M.D. Morris, T.-C. Chen, D.S. Rao, W.F. Finney, E. Widjaja, S.A. Goldstein, Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39, 1190–1195 (2006)CrossRefGoogle Scholar
  77. 77.
    B. Sharma, K. Ma, M.R. Glucksberg, R.P. Van Duyne, Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. J. Am. Chem. Soc. 135, 17290–17293 (2013)CrossRefGoogle Scholar
  78. 78.
    D.M. Good, V. Thongboonkerd, J. Novak, J.-L. Bascands, J.P. Schanstra, J.J. Coon, A. Dominiczak, H. Mischak, Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. J. Proteome Res. 6, 4549–4555 (2007)CrossRefGoogle Scholar
  79. 79.
    M.D. Perkins, D.R. Bell, Working without a blindfold: the critical role of diagnostics in malaria control. Malaria J. 7 (2008)Google Scholar
  80. 80.
    A.J. Hobro, A. Konishi, C. Coban, N.I. Smith, Raman spectroscopic analysis of malaria disease progression via blood and plasma samples. Analyst 138, 3927–3933 (2013)CrossRefGoogle Scholar
  81. 81.
    U. Neugebauer, S. Trenkmann, T. Bocklitz, D. Schmerler, M. Kiehntopf, J. Popp, Fast differentiation of SIRS and sepsis from blood plasma of ICU patients using Raman spectroscopy. J. Biophotonics 7, 232–240 (2014)CrossRefGoogle Scholar
  82. 82.
    I. Taleb, G. Thiefin, C. Gobinet, V. Untereiner, B. Bernard-Chabert, A. Heurgue, C. Truntzer, P. Hillon, M. Manfait, P. Ducoroy, G.D. Sockalingum, Diagnosis of hepatocellular carcinoma in cirrhotic patients: a proof-of-concept study using serum micro-Raman spectroscopy. Analyst 138, 4006–4014 (2013)CrossRefGoogle Scholar
  83. 83.
    S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, H. Zeng, Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens. Bioelectron. 25, 2414–2419 (2010)CrossRefGoogle Scholar
  84. 84.
    S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, H. Zeng, Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens. Bioelectron. 26, 3167–3174 (2011)CrossRefGoogle Scholar
  85. 85.
    S. Feng, D. Lin, J. Lin, B. Li, Z. Huang, G. Chen, W. Zhang, L. Wang, J. Pan, R. Chen, H. Zeng, Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer. Analyst 138, 3967–3974 (2013)CrossRefGoogle Scholar
  86. 86.
    T.J. Harvey, E.C. Faria, A. Henderson, E. Gazi, A.D. Ward, N.W. Clarke, M.D. Brown, R.D. Snook, P. Gardner, Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers. J. Biomed. Opt. 13, 064004 (2008)CrossRefGoogle Scholar
  87. 87.
    K.V. Kong, W.K. Leong, Z. Lam, T. Gong, D. Goh, W.K.O. Lau, M. Olivo, A rapid and label-free SERS detection method for biomarkers in clinical biofluids. Small 10, 5030–5034 (2014)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of NottinghamNottinghamUK

Personalised recommendations