Advances in Optoacoustic Imaging: From Benchside to Clinic

  • Chris Jun Hui Ho
  • Neal C. Burton
  • Stefan Morscher
  • U. S. Dinish
  • Josefine Reber
  • Vasilis Ntziachristos
  • Malini OlivoEmail author
Part of the Progress in Optical Science and Photonics book series (POSP, volume 3)


Optoacoustic imaging has been widely used for in vivo disease diagnosis and therapy monitoring. Acquisition hardware, analysis, and contrast agents have been subject to much innovation, creating access to an ever-growing range of biomedical applications. In this review, a broad overview of optoacoustic theory, instrumentation and data processing is provided, together with the various categories of contrast agents that have been developed. In addition, the application of these techniques and contrast agents in preclinical and clinical imaging applications will be discussed in detail, ranging from imaging of cancer and various organs like skin, brain and breast to sentinel lymph node mapping. Finally under conclusions, we highlighted future perspectives in this field, in the context of instrumentation and software development, as well as advances in clinical translation.


Contrast Agent Sentinel Lymph Node Methylene Blue Graphical Processing Unit Independent Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.G. Bell, On the production and reproduction of sound by light. Am. J. Sci. 20, 305–324 (1880)Google Scholar
  2. 2.
    A.G. Bell, Upon the production of sound by radiant energy. Philos. Mag. 11, 510 (1881)Google Scholar
  3. 3.
    J. Xia, J. Yao, L.V. Wang, Photoacoustic tomography: principles and advances. Electromagnetic Waves (Cambridge) 147, 1–22 (2014)CrossRefGoogle Scholar
  4. 4.
    V. Ntziachristos, Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010)CrossRefGoogle Scholar
  5. 5.
    S. Kellnberger, A. Hajiaboli, D. Razansky, V. Ntziachristos, Near-field thermoacoustic tomography of small animals. Phys. Med. Biol. 56(11), 3433–3444 (2011)CrossRefGoogle Scholar
  6. 6.
    R. Ma, S. Söntges, S. Shoham, V. Ntziachristos, D. Razansky, Fast scanning coaxial optoacoustic microscopy. Biomed. Opt. Express 3(7), 1724–1731 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Schwarz, M. Omar, M. Buehler, J. Aguirre, V. Ntziachristos, Implications of ultrasound frequency in optoacoustic mesoscopy of the skin. IEEE Trans. Med. Imaging 34(2), 672–677 (2014)CrossRefGoogle Scholar
  8. 8.
    L.V. Wang, L. Gao, Photoacoustic microscopy and computed tomography: from bench to bedside. Ann. Rev. Biomed. Eng. 16, 155–185 (2014)CrossRefGoogle Scholar
  9. 9.
    V. Ntziachristos, D. Razansky, Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 110(5), 2783–2794 (2010)CrossRefGoogle Scholar
  10. 10.
    S.E. Bohndiek, S. Bodapati, D. van de Sompel, S.R. Kothapalli, S.S. Gambhir, Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments. PLoS ONE 8(9), e75533 (2013)CrossRefGoogle Scholar
  11. 11.
    R. Su, S. Ermilov, A. Liopo, A. Oraevsky, Laser optoacoustic tomography: towards new technology for biomedical diagnostics. Nucl. Instrum. Methods Phys. Res., Sect. A 720, 58–61 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, F.S. Foster, Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(5), 888–897 (2013)CrossRefGoogle Scholar
  13. 13.
    A. Rosenthal, S. Kellnberger, M. Omar, D. Razansky, V. Ntziachristos, Wideband optical detector of ultrasound for medical imaging applications. J. Vis. Exp. 87, e50847 (2014)Google Scholar
  14. 14.
    A. Rosenthal, V. Ntziachristos, D. Razansky, Acoustic inversion in optoacoustic tomography: a review. Curr. Med. Imaging Rev. 9(4), 318–336 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Rosenthal, V. Ntziachristos, D. Razansky, Model-based optoacoustic inversion with arbitrary-shape detectors. Med. Phys. 38(7), 4285–4295 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Queirós, X.L. Déan-Ben, A. Buehler, D. Razansky, A. Rosenthal, V. Ntziachristos, Modeling the shape of cylindrically focused transducers in three-dimensional optoacoustic tomography. J. Biomed. Opt. 18(7), 076014 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Rosenthal, T. Jetzfellner, D. Razansky, V. Ntziachristos, Efficient framework for model-based tomographic image reconstruction using wavelet packets. IEEE Trans. Med. Imaging 31(7), 1346–1357 (2012)CrossRefGoogle Scholar
  18. 18.
    S.L. Jacques, Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation. Photoacoustics 2(4), 137–142 (2014)CrossRefGoogle Scholar
  19. 19.
    B.T. Cox, S.R. Arridge, K.P. Köstli, P.C. Beard, Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. Appl. Opt. 45(8), 1866–1875 (2006)CrossRefGoogle Scholar
  20. 20.
    J. Glatz, N.C. Deliolanis, A. Buehler, D. Razansky, V. Ntziachristos, Blind source unmixing in multi-spectral optoacoustic tomography. Opt. Express 19(4), 3175–3184 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Stritzker, L. Kirscher, M. Scadeng, N.C. Deliolanis, S. Morscher, P. Symvoulidis, K. Schaefer, Q. Zhang, L. Buckel, M. Hess, U. Donat, W.G. Bradley, V. Ntziachristos, A.A. Szalay, Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer. Proc. Natl. Acad. Sci. 110(9), 3316–3320 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Tzoumas, N. Deliolanis, S. Morscher, V. Ntziachristos, Un-mixing molecular agents from absorbing tissue in multispectral optoacoustic tomography. IEEE Trans. Med. Imaging 33(1), 48–60 (2013)CrossRefGoogle Scholar
  23. 23.
    J.F. Lovell, T.W.B. Liu, J. Chen, G. Zheng, Activatable photosensitizers for imaging and therapy. Chem. Rev. 110, 2839–2857 (2010)CrossRefGoogle Scholar
  24. 24.
    E. Morgounova, Q. Shao, B.J. Hackel, D.D. Thomas, S. Ashkenazi, Photoacoustic lifetime contrast between methylene blue monomers and self-quenched dimers as a model for dual-labeled activatable probes. J. Biomed. Opt. 18(5), 056004/1-9 (2013)Google Scholar
  25. 25.
    M. Jeon, W. Song, E. Huynh, J. Kim, J. Kim, B.L. Helfield, B.Y.C. Leung, D.E. Goertz, G. Zheng, J. Oh, J.F. Lovell, C. Kim, Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging, J. Biomed. Opt. 19(1), 016005/1-9 (2014)Google Scholar
  26. 26.
    Q. Shao, E. Morgounova, C. Jiang, J. Choi, J. Bischof, S. Ashkenazi, In vivo photoacoustic lifetime imaging of tumor hypoxia in small animals. J. Biomed. Opt. 18(7), 076019/1-9 (2013)Google Scholar
  27. 27.
    A. Hirao, S. Sato, D. Saitoh, N. Shinomiya, H. Ashida, M. Obara, In vivo photoacoustic monitoring of photosensitizer distribution in burned skin for antibacterial photodynamic therapy. Photochem. Photobiol. 86, 426–430 (2010)CrossRefGoogle Scholar
  28. 28.
    S. Stolik, S.A. Tornás, E. Ramón-Gallegos, A. Cruz-Orea, F. Sánchez-Sinencio, Determination of aminolevulinic-acid-induced protoporphyrin IX in mice skin. Rev. Sci. Instr. 74(1), 374–377 (2003)CrossRefGoogle Scholar
  29. 29.
    A. Abuteen, S. Zanganeh, J. Akhigbe, L.P. Samankumara, A. Aguirre, N. Biswal, M. Braune, A. Vollertsen, B. Röder, C. Brückner, Q. Zhu, The evaluation of NIR-absorbing porphyrin derivatives as contrast agents in photoacoustic imaging. Phys. Chem. Chem. Phys. 15, 18502–18509 (2013)CrossRefGoogle Scholar
  30. 30.
    D. Zhang, Y.-X. Zhao, Z.-Y. Qiao, U. Mayerhöffer, P. Spenst, X.-J. Li, F. Würthner, H. Wang, Nano-confined squaraine dye assemblies: new photoacoustic and near-infrared fluorescence dual-modular imaging probes in vivo. Bioconjug. Chem. 25(11), 2021–2029 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Frenette, M. Hatamimoslehabadi, S. Bellinger-Buckley, S. Laoui, J. La, S. Bag, S. Mallidi, T. Hasan, B. Bouma, C. Yelleswarapu, J. Rochford, Shining light on the dark side of imaging: excited state absorption enhancement of a bis-styryl BODIPY photoacoustic contrast agent. J. Am. Chem. Soc. 136(45), 15853–15856 (2014)CrossRefGoogle Scholar
  32. 32.
    A.B.E. Attia, G. Balasundaram, W. Driessen, V. Ntziachristos, M. Olivo, Phthalocyanine photosensitizers as contrast agents for in vivo photoacoustic tumor imaging. Biomed. Opt. Exp. 6, 591–598 (2015)Google Scholar
  33. 33.
    N. Bézière, V. Ntziachristos, Optoacoustic imaging of naphthalocyanine: potential for contrast enhancement and therapy monitoring. J. Nucl. Med. 56(2), 323–328 (2015)CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, M. Jeon, L.J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T.E. Barnhart, P. Alexandridis, J.D. Huizinga, M. Seshadri, W. Cai, C. Kim, J.F. Lovell, Non-invasive multimodal functional imaging of the intestine with frozen micellar napthalocyanines. Nature Nanotech. doi: 10.1038/NNANO.2014.130 (2014)Google Scholar
  35. 35.
    C.J.H. Ho, G. Balasundaram, W. Driessen, R. McLaren, C.L. Wong, U.S. Dinish, A.B.E. Attia, V. Ntziachristos, M. Olivo, Multifunctional photosensitizer-based contrast agents for photoacoustic imaging. Sci. Rep. 4, 5342–5347 (2014)Google Scholar
  36. 36.
    E. Herzog, A. Taruttis, N. Bézière, A.A. Lutich, D. Razansky, V. Ntziachristos, Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology 263(2), 461–468 (2012)CrossRefGoogle Scholar
  37. 37.
    A. Buehler, E. Herzog, D. Razansky, V. Ntziachristos, Video rate optoacoustic tomography of mouse kidney perfusion. Opt. Lett. 35(14), 2475–2477 (2010)CrossRefGoogle Scholar
  38. 38.
    A. Taruttis, S. Morscher, N.C. Burton, D. Razansky, V. Ntziachristos, Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs. PLoS ONE 7(1), e30491/1-6 (2012)Google Scholar
  39. 39.
    N. Bézière, N. Lozano, A. Nunes, J. Salichs, D. Queiros, K. Kostarelos, V. Ntziachristos, Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 37, 415–424 (2015)CrossRefGoogle Scholar
  40. 40.
    G. Kim, S.-W. Huang, K.C. Day, M. O’Donnell, R.R. Agayan, M.A. Day, R. Kopelman, S. Ashkenazi, Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging. J. Biomed. Opt. 1(4), 044020/1-8 (2007)Google Scholar
  41. 41.
    S. Zanganeh, H. Li, P.D. Kumavor, U. Alqasemi, A. Aguirre, I. Mohammad, C. Stanford, M.B. Smith, Q. Zhu, Photoacoustic imaging enhanced by indocyanine green-conjugated single-wall carbon nanotubes. J. Biomed. Opt. 18(9), 096006/1-11 (2013)Google Scholar
  42. 42.
    L. Li, R.J. Zemp, G. Lungu, G. Stoica, L.V. Wang, Photoacoustic imaging of lacZ gene expression in vivo. J. Biomed. Opt. 12(2), 020504/1-3 (2007)Google Scholar
  43. 43.
    X. Cai, L. Li, A. Krumholz, Z. Guo, T.N. Erpelding, C. Zhang, Y. Zhang, Y. Xia, L.V. Wang, Multi-scale molecular photoacoustic tomography of gene expression. PLoS ONE 7(8), 1–7 (2012)zbMATHGoogle Scholar
  44. 44.
    A. Krumholz, S.J. VanVickle-Chavez, J. Yao, T.P. Fleming, W.E. Gillanders, L.V. Wang, Photoacoustic microscopy of tyrosinase reporter gene in vivo. J. Biomed. Opt. 16(8), 080503/1-4 (2011)Google Scholar
  45. 45.
    R.J. Paproski, A.E. Forbrich, K. Wachowicz, M.M. Hitt, R.J. Zemp, Tyrosinase as a dual reporter gene for both photoacoustic and magnetic resonance imaging. Biomed. Opt. Express 2(4), 771–780 (2011)CrossRefGoogle Scholar
  46. 46.
    R.J. Paproski, A. Forbrich, T. Harrison, M. Hitt, R.J. Zemp, Photoacoustic imaging of gene expression using tyrosinase as a reporter gene. Proc. SPIE 7899(78991H/1-7) (2011)Google Scholar
  47. 47.
    R.J. Paproski, A. Heinmiller, K. Wachowicz, R.J. Zemp, Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors. Sci. Rep. 4(5329), 1–7 (2014)Google Scholar
  48. 48.
    C. Qin, K. Cheng, K. Chen, X. Hu, Y. Liu, X. Lan, Y. Zhang, H. Liu, Y. Xu, L. Bu, X. Su, X. Zhu, S. Meng, Z. Cheng, Tyrosinase as a multifunctional reporter gene for photoacoustic/MRI/PET triple modality molecular imaging. Sci. Rep. 3(1490), 1–8 (2013)Google Scholar
  49. 49.
    N.C. Deliolanis, A. Ale, S. Morscher, N.C. Burton, K. Schaefer, K. Radrich, D. Razansky, V. Ntziachristos, Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview. Mol. Imaging Biol. 16, 652–660 (2014)CrossRefGoogle Scholar
  50. 50.
    J.F. Lovell, G. Zheng, Activatable smart probes for molecular optical imaging and therapy. J. Innov. Opt. Health Sci. 1(1), 45–61 (2008)CrossRefGoogle Scholar
  51. 51.
    J. Levi, S.R. Kothapalli, T.-J. Ma, K. Hartman, B.T. Khuri-Yakub, S.S. Gambhir, Design, synthesis, and imaging of an activatable photoacoustic probe. J. Am. Chem. Soc. 132, 11264–11269 (2010)CrossRefGoogle Scholar
  52. 52.
    J. Levi, S.R. Kothapalli, S. Bohndiek, J.-K. Yoon, A. Dragulescu-Andrasi, C. Nielsen, A. Tisma, S. Bodapati, G. Gowrishankar, X. Yan, C. Chan, D. Starcevic, S.S. Gambhir, Molecular photoacoustic imaging of follicular thyroid carcinoma. Clin. Cancer Res. 19(6), 1494–1502 (2013)CrossRefGoogle Scholar
  53. 53.
    K. Yang, L. Zhu, L. Nie, X. Sun, L. Cheng, C. Wu, G. Niu, X. Chen, Z. Liu, Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles. Theranostics 4(2), 134–141 (2014)CrossRefGoogle Scholar
  54. 54.
    A. Dragulescu-Andrasi, S.-R. Kothapalli, G.A. Tikhomirov, J. Rao, S.S. Gambhir, Activatable oligomerizable imaging agents for photoacoustic imaging of furin-like activity in living subjects. J. Am. Chem. Soc. 135, 11015–11022 (2013)CrossRefGoogle Scholar
  55. 55.
    D. Razansky, N.J. Harlaar, J.L. Hillebrands, A. Taruttis, E. Herzog, C.J. Zeebregts, G.M. van Dam, V. Ntziachristos, Multispectral optoacoustic tomography of matrix metalloproteinase activity in vulnerable human carotid plaques. Mol. Imaging Biol. 14, 277–285 (2011)CrossRefGoogle Scholar
  56. 56.
    Z. Zha, Z. Deng, Y. Li, C. Li, J. Wang, S. Wang, E. Qu, Z. Dai, Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 5, 4462–4467 (2013)CrossRefGoogle Scholar
  57. 57.
    J. Liu, J. Geng, L.-D. Liao, N. Thakor, X. Gao, B. Liu, Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polymer Chem. 5, 2854–2862 (2014)CrossRefGoogle Scholar
  58. 58.
    G. Balasundaram, C.J.H. Ho, K. Li, W. Driessen, U.S. Dinish, C.L. Wong, V. Ntziachristos, B. Liu, M. Olivo, Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer. Int. J. Nanomed. 10, 387–397 (2015)CrossRefGoogle Scholar
  59. 59.
    K. Pu, A.J. Shuhendler, J.V. Jokerst, J. Mei, S.S. Gambhir, Z. Bao, J. Rao, Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nature Nanotech. 9, 233–239 (2014)CrossRefGoogle Scholar
  60. 60.
    K.V. Kong, L.-D. Liao, Z. Lam, N.V. Thakor, W.K. Leong, M. Olivo, Organometallic carbonyl clusters: a new class of contrast agents for photoacoustic cerebral vascular imaging. Chem. Comm. 50, 2601–2603 (2014)CrossRefGoogle Scholar
  61. 61.
    S.K. Maji, S. Sreejith, J. Joseph, M. Lin, T. He, Y. Tong, H. Sun, S.W.-K. Yu, Y. Zhao, Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice. Adv. Mater. doi: 10.1002/adma.201400831 (2014)
  62. 62.
    U.S. Dinish, Z. Song, C.J.H. Ho, G. Balasundaram, A.B.E. Attia, X. Lu, B.Z. Tang, B. Liu, M. Olivo, Single molecule with dual function on nanogold: biofunctionalized construct for in vivo photoacoustic imaging and SERS biosensing. Adv. Funct. Mater. doi: 10.1002/adfm.201404341 (2015)
  63. 63.
    S. Mallidi, G.P. Luke, S. Emelianov, Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 29(5), 213–221 (2011)CrossRefGoogle Scholar
  64. 64.
    H.F. Zhang, K. Maslov, G. Stoica, L.V. Wang, Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnol. 24, 848–851 (2006)CrossRefGoogle Scholar
  65. 65.
    R.I. Siphanto, K.K. Thumma, R.G. Kolkman, T.G. van Leeuwen, F.F. de Mul, J.W. van Neck, L.N. van Adrichem, W. Steenbergen, Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis. Opt. Express 13(1), 89–95 (2005)CrossRefGoogle Scholar
  66. 66.
    J. Staley, P. Grogan, A.K. Samadi, H. Cui, M.S. Cohen, X. Yang, Growth of melanoma brain tumors monitored by photoacoustic microscopy. J. Biomed. Opt. 15(4), 040510 (2010)CrossRefGoogle Scholar
  67. 67.
    J.-T. Oh, M.-L. Li, H.F. Zhang, K. Maslov, Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. J. Biomed. Opt. 11(3), 034032 (2006)CrossRefGoogle Scholar
  68. 68.
    G. Ku, X. Wang, X. Xie, G. Stoica, L.V. Wang, Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography. Appl. Opt. 44(5), 770–775 (2005)CrossRefGoogle Scholar
  69. 69.
    M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, L.V. Wang, Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE 96(3), 481–489 (2008)CrossRefGoogle Scholar
  70. 70.
    D. Wu, L. Huang, M.S. Jiang, H. Jiang, Contrast agents for photoacoustic and thermoacoustic imaging—a review. Int. J. Mol. Sci. 15(12), 23616–23639 (2014)CrossRefGoogle Scholar
  71. 71.
    S.V. Hudson, J.S. Huang, W. Yin, S. Albeituni, J. Rush, A. Khanai, J. Yan, B.P. Ceresa, H.B. Frieboes, L.R. McNally, Targeted noninvasive imaging of EGFR-expressing orthotopic pancreatic cancer using multispectral optoacoustic tomography. Cancer Res. 74(21), 6271–6279 (2014)CrossRefGoogle Scholar
  72. 72.
    J.P. Mota, J.L.C. Carvalho, S.S. Carvalho, P.R. Barja, Photoacoustic technique applied to skin research: characterization of tissue, topically applied products and transdermal drug delivery. Acoustic Waves—From Microdevices to Helioseismology (Intech) (2011)Google Scholar
  73. 73.
    E.Z. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, W. Drexler, Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging. Biomed. Opt. Express 2(8), 2202–2215 (2011)CrossRefGoogle Scholar
  74. 74.
    C. Kim, E.C. Cho, J. Chen, K.H. Song, L. Au, C. Favazza, Q. Zhang, C.M. Cobley, F. Gao, Y. Xia, L.V. Wang, In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4(8), 4559–4564 (2010)CrossRefGoogle Scholar
  75. 75.
    X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, L.V. Wang, Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21(7), 803–806 (2003)CrossRefGoogle Scholar
  76. 76.
    X. Wang, X. Xie, G. Ku, L.V. Wang, G. Stoica, Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J. Biomed. Opt. 11(2), 024015 (2006)CrossRefGoogle Scholar
  77. 77.
    N.C. Burton, M. Patel, S. Morscher, W.H. Driessen, J. Claussen, N. Beziere, T. Jetzfellner, A. Taruttis, D. Razansky, B. Bednar, V. Ntziachristos, Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization. NeuroImage 65, 522–528 (2013)CrossRefGoogle Scholar
  78. 78.
    M.F. Kircher, A. de la Zerda, J.V. Jokerst, C.L. Zavaleta, P.J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C.W. Brennan, I.K. Mellinghoff, E.C. Holland, S.S. Gambhir, A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nature Med. 18(5), 829–835 (2012)CrossRefGoogle Scholar
  79. 79.
    S. Zackrisson, S.M. van de Ven, S.S. Gambhir, Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res. 74(4), 979–1004 (2014)CrossRefGoogle Scholar
  80. 80.
    A.D. Nunn, From clinical trials to prescriptions. J. Nucl. Med. 47(12), 36N–37N (2006)Google Scholar
  81. 81.
    P.R. Crippa, C. Viappiani, Photoacoustic studies of non-radiative relaxation of excited states in melanin. Eur. Biophys. J. 17(6), 299–305 (1990)CrossRefGoogle Scholar
  82. 82.
    S.D. Nathanson, Insights into the mechanisms of lymph node metastasis. Cancer 98(2), 413–423 (2003)MathSciNetCrossRefGoogle Scholar
  83. 83.
    C. Kim, K.H. Song, F. Gao, L.V. Wang, Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats—volumetric spectrosocpic photoacoustic imaging and planar fluorescence imaging. Radiology 255(2), 442–450 (2010)CrossRefGoogle Scholar
  84. 84.
    G.C. Langhout, D.J. Grootendorst, O.E. Nieweg, M.W.J.M. Wouters, J.A. van der Hage, J. Jose, H. van Boven, W. Steenbergen, S. Manohar, T.J.M. Ruers, Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging. Int. J. Biomed. Imaging 163652, 1–7 (2014)CrossRefGoogle Scholar
  85. 85.
    S.A. Ermilov, T. Khamapirad, A. Conjusteau, M.H. Leonard, R. Lacewell, K. Mehta, T. Miller, A.A. Oraevsky, Laser optoacoustic imaging system for detection of breast cancer. J. Biomed. Opt. 14(2), 024007 (2009)CrossRefGoogle Scholar
  86. 86.
    Taruttis et al., Multispectral optoacoustic vascular imaging in the lower extremities: a comparison to clinical duplex ultrasound. Submitted (2015)Google Scholar
  87. 87.
    A. Dima, V. Ntziachristos, Non-invasive carotid imaging using optoacoustic tomography. Opt. Express 20(22), 25044–25057 (2012)CrossRefGoogle Scholar
  88. 88.
    Ford et al., Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography. Submitted (2015)Google Scholar
  89. 89.
    T. Ida, Y. Kawaguchi, S. Kawauchi, K. Iwaya, H. Tsuda, D. Saitoh, S. Sato, T. Iwai, Real time photoacoustic imaging system for burn diagnosis. J. Biomed. Opt. 19(8), 086013 (2014)CrossRefGoogle Scholar
  90. 90.
    J. Aguirre, M. Schwarz, D. Soliman, A. Buehler, M. Omar, V. Ntziachristos, Broadband mesoscopic optoacoustic tomography reveals skin layers. Opt. Lett. 39(21), 6297–6300 (2014)CrossRefGoogle Scholar
  91. 91.
    L. Vionnet, J. Gateau, M. Schwarz, A. Buehler, V. Ermolayev, V. Ntziachristos, 24-MHz scanner for optoacoustic imaging of skin and burn. IEEE Trans. Med. Imaging 33(2), 535–545 (2014)CrossRefGoogle Scholar
  92. 92.
    M. Omar, M. Schwarz, D. Soliman, P. Symvoulidis, V. Ntziachristos, Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM). Neoplasia 17(2), 208–214 (2015)CrossRefGoogle Scholar
  93. 93.
    N. Bézière, C. von Schacky, Y. Kosanke, M. Kimm, A. Nunes, K. Licha, M. Aichler, A. Walch, E.J. Rummeny, V. Ntziachristos, R. Meier, Optoacoustic imaging and staging of inflammation in a murine model of arthritis. Arthritis Rheumatol. 66(8), 2071–2078 (2014)CrossRefGoogle Scholar
  94. 94.
    C. Lutzweiler, R. Meier, E. Rummeny, V. Ntziachristos, D. Razansky, Real-time optoacoustic tomography of indocyanine green perfusion and oxygenation parameters in human finger vasculature. Opt. Lett. 39(14), 4061–4064 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Chris Jun Hui Ho
    • 1
  • Neal C. Burton
    • 2
    • 3
  • Stefan Morscher
    • 2
    • 3
    • 4
  • U. S. Dinish
    • 1
  • Josefine Reber
    • 2
    • 4
  • Vasilis Ntziachristos
    • 2
    • 4
  • Malini Olivo
    • 1
    • 5
    Email author
  1. 1.Bio-Optical Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and ResearchSingaporeSingapore
  2. 2.Helmholtz Center MunichInstitute for Biological and Medical ImagingNeuherbergGermany
  3. 3.Ithera Medical, GmbHMunichGermany
  4. 4.Technical University of MunichMunichGermany
  5. 5.School of PhysicsNational University of IrelandGalwayIreland

Personalised recommendations